• Title/Summary/Keyword: baffles

Search Result 185, Processing Time 0.021 seconds

Experimental Study on the Combustion Stability of Full Scale Rocket Combustor (실물형 액체로켓 연소기의 연소안정성에 대한 시험적인 고찰)

  • Lee Kwang-Jin;Seo Seong-Hyeon;Kang Dong-Hyeuk;Song Ju-Young;Lim Byoung-Jik;Han Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.240-246
    • /
    • 2005
  • A series of combustion tests of a 30-tonf-class full scale liquid rocket thrust chamber under development has been carried out to verify its design. The test results revealed decent performance in the aspects of efficiency. The combustion stability is one of the most important parameters of liquid rocket engine in addition to the efficiency. Assessment tests of combustion stability must be accomplished to confirm the possibility of combustion instability due to spontaneous or external disturbances. The combustion stability rating tests of the full scale thrust chamber with temporary baffles made of stainless steel were carried out utilizing pulse guns to estimate combustion stability characteristics. The tests results show highly stable combustion stability characteristics. The outcome acquired from the present experimental study will be used to design an actively cooled baffle that can survive for the life time operation of the thrust chamber.

  • PDF

SS Removal-rate Efficiency of Storm-water Detention Storage Tank Depending upon Length, Inside Training Wall and Gravel Filling (우수저류조의 형상과 도류벽 및 자갈채움에 따른 SS 제거효율)

  • Lee, Jong Tae;Seo, Hong Joon;Seo, Kyung A
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.655-667
    • /
    • 2009
  • An experimental study is performed on reducing the pollutants supplied by storm water through enhancing efficiency of SS from the detention storage tank where CSOs are kept temporarily before discharge to the receiving water system. SS removal efficiency is investigated in accordance with various conditions of the detention pond-such as its length, the existence of training wall, and the use of gravel filling. The removal efficiency is strongly affected by the detention pond's length until the critical falling distance of the suspended solids is reached. For cases where the tank has a length longer than this critical condition, the removal rate shows less sensitivity. To enhance the SS removal efficiency of tanks of shorter than the critical length, we studied alternative types of tank in which inside training walls are installed. The results showed improvement of 14 to 37% in removal efficiency in 2hours detention(2 training walls). The important factor in achieving a high SS removal rate is ensuring the critical length of the detention pond, but for the cases where the basin length cannot be guaranteed, baffles or a gravel filling scheme may be introduced to attain considerable efficiency. The results of studying and comparing different storage tank conditions show that, in terms of elimination efficiency, a storage tank with gravel filling and training walls > a storage tank with gravel filling > a storage tank with training walls > an empty tank. The experimental results should contribute to development of related further research, by empirically verifying the already assumed importance of critical falling distance, training walls, and gravel filling schemes.

Power Input of Pitched and Double-Stage Paddle Impeller in a Agitated Vessel (교반조에서 경사 및 2단 Impeller의 교반소요동력에 관한 연구)

  • Lee, Young-Sei;Kim, Moon-Kap;Kim, Jong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.18-25
    • /
    • 1996
  • Power input in stirred vessel is especially important in the design of mixers, as well as the evaluation of mixing processes. A type of baffles in mechanically agitated vessels and power employed are major factors that determine the stirring efficiency in a large scale, multi-step processes. In the present study, power input in the totally baffled agitated vesseles was compared systematically in connection with several previous studies and adequate power input correlation was found to be : $Np_{(pitch)}=({\theta}/90^{\circ})Np_{(90^{\circ})}$ Power number correlation was dependent upon the distance of among the impeller in the agitated vesseles, as follows : $$Np=7.09(n_p)^{0.7}(\frac{b_(double)}{d})(\frac{H}{D})^{0.18}$$, $${n_p}^{0.7}(\frac{b_{(double)}}d)$$<2 $$Np=8.73\{(n_p)^{0.7}(\frac{b_{(double)}}{d})\}^{0.7}(\frac{H}{D})^{0.18}$$, $${n_p}^{0.7}(\frac{b_{(double)}}d)$$>2.

  • PDF

Dynamic Suppression Effects of Liquid Container to the Baffle Number and Hole Diameter (배플개수 및 내경변화에 따른 액체 저장탱크의 동억제 효과)

  • 조진래;김민정;이상영;허진욱
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2002
  • The dynamic load caused by sloshing of internal fluid severely affects the structural and control stabilities of cylindrical liquid containers accelerating vertically. If the sloshing frequency of fluid is near the frequency of control system or the tank structure, large dynamic force and moment act on launching vehicles. For the suppression of such dynamic effects, generally flexible ring-type baffles are employed. In this paper, we perform the numerical analysis to evaluate the dynamic suppression effects of baffle. The parametric analysis is performed with respect to the baffle inner-hole diameter and two different baffle spacing types : equal spacing with respect to the tank and one with respect to the fluid height. The ALE (arbitrary Lagrangin-Eulerian) numerical method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and elastic structure.

A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler (발전용 보일러 후부 전열면 소음진동 저감에 관한 연구)

  • Lee, Gyong-Soon;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.54-59
    • /
    • 2008
  • The resonance of boiler is caused by exciting force in the gas path and it generates the vibration by the harmony of boiler's dimensional factor. According to trending toward the boiler of increasing capacity and a bigger size, it has a problem of the vibration at back-pass heating surfaces. We can predict such vibrations as comparison between vortex frequency and gas column's natural frequency. We can't rely on the method for the past decades because of changing parameters, such as an allowable error, gas temperature, gas velocity, Strouhal number. We can reduce the vibration to use the seasoning effect and change the operating condition in coal fired boiler but it's not essential solution. When the vibration occurred in the model boiler, we must measures the acoustic pressure and frequency of places for considering the means. So far, we confirmed the problem from field measures and theoretical analysis about the acoustic vibration of boiler. We installed anti-acoustic baffle in a existing boiler to change the acoustic natural frequency at the cavity, which results in reducing the acoustic vibration. The first, we prove that the acoustic resonance is caused by harmonizing vortex shedding frequency of tube heat surface with acoustic natural frequency of cavity in the range of 650~750 MW loads. The second, the acoustic resonance at the back-pass heating surface has the third order of acoustic natural frequency at the second economizer. We install five anti-acoustic baffles at the second economizer to reducing the resonance. We confirm considerably reducing the acoustic vibration of boiler during the commercial boiler.

  • PDF

CFD (Computational Fluid Dynamics) Study on Partial-Load Combustion Characteristics of a 4-Step-Grate Wood Pellet Boiler (4단 화격자 목재 펠릿 보일러의 부분부하 연소해석)

  • Ahn, Joon;Jang, Jun Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • A numerical simulation was conducted for the combustion chamber of a 4-step grate-firing boiler for wood pellet fuel. The flame is extended to the exit of combustion chamber, which is reproduced by present numerical method based on a homogeneous reaction model. Flow field from the simulation shows a strong recirculation flow at the upstream corner of the chamber, along which the flame is extended to the exit. These combustion and flow characteristics remain unchanged for partial load operations, which suggest modification of the combustion chamber structure rather than resizing should be effective to improve combustion characteristics. Possible modifications for combustion chamber are suggested such as relocating its exit, increasing the number of grate steps or installing internals such as guide baffles.

CFD Analysis on the Flow in the Connection Duct of the Cyclone-Bag Hybrid Dust Collector (사이클론-백 하이브리드형 집진장치에서 유동연결부 설계조건에 따른 유동균일성 전산해석)

  • Koo, Seongmo;Oh, Wonchul;Chang, Hyuksang
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.115-126
    • /
    • 2016
  • Numerical analysis was done to evaluate the movement of the particles and the fluid inside of the cyclone-bag hybrid dust collector. Flow discharged from the cyclone in the hybrid particle collector has swirl pattern, and it results in the biased flow to the bag filters and deteriorates the collection performance of the bag filter. The current study is to evaluate the effect of the duct lengths and the baffle arrays in the connection duct by the computational methods. Main concerns of the analysis are how to improve the uniformity of the internal flow between the cyclone and the bag filter. Numerical analysis was done to check the particle removal efficiencies of the system with respect to the flow characteristics which is expressed in RMS values of the upward flow inside of the connection duct. The flow pattern inside of the connection duct is evaluated under different the duct lengths and the baffle arrays. In case of the reference geometry the RMS value of inside flow was 56.7%, and the value was decreased to 30.1% by controlling the lengths of duct. The effects of baffle was also evaluated, the RMS value of flow could be decreased 55.2% and so on. But the pressure drop across the baffles becomes high and the system efficiency becomes lower.

The Separation Performance of Disc Plate and Frame Type Reverse Osmosis Modules (원판틀형 역삼투 모듈의 투과성능 비교)

  • 박민수;배성렬;정건용
    • Membrane Journal
    • /
    • v.7 no.2
    • /
    • pp.75-83
    • /
    • 1997
  • The disc plate and frame type modules for reverse osmosis were developed using three different types of baffles: linear (Type 1), curved (Type 2) and parallel shapes (Type 3). Separation performance tests were carried out for the modules using NaCl and sucrose solutions under the various concentrations and operating pressures. The permeation flux and solute rejection ratio for Type 3 module were the highest within operating pressure (35bar) and flow rate (6 l/min). The flux improvement ratio of Type 2 or 3 to Type 1 for NaCl solution decreased as operating pressure increased: flux improvement ratios of Type 3 for 1wt% of NaCl solution were about 100 and 10% at 10 and 35bar, respectively. However, the flux improvement ratio for sucrose solutions varied with the operating pressure and concentration. The permeation flux for Type 3 depended on the flow rate linearly, which is higher than that of turbulent flow region in the smooth channel.

  • PDF

Development of Oil-water Separator for the Effective Application of Highly Selective Membranes (고선택성 유수분리막 적용성 향상을 위한 유수분리장치 성능 개선 연구)

  • Choi, Kwang-Soon;Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.39-42
    • /
    • 2019
  • We report on the design of oil-water separators and the selection of materials for the effective application of highly selective membranes fabricated by commercial PET (polyester) fabrics. The waterproof ability of PET fabrics was optimized to improve the separation selectivity. The density of individual PET fabrics should be over $60g/m^2$, and the multi-layered structure is more favorable for the waterproof ability together with maintaining the removal efficiency. For the continuous adsorption and removal process, the rotating perforated cylinder was selected, and covered with membranes. Furthermore, more improved and stable removal efficiency was obtained by installing floating baffles which forces the oil content to move toward membranes.

Improved Kerosene Quality with the Use of a Gamma Alumina Nanoparticles Supported Zinc Oxide Catalyst in a Digital Batch Baffled Reactor: Experiments and Process Modelling

  • Jasim I. Humadi;Ghassan Hassan Abdul Razzaq;Ghassan Hassan Abdul Razzaq;Mustafa A. Ahmed;Liqaa I. Saeed
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.226-233
    • /
    • 2023
  • To create an environmentally sustainable fuel with a low sulfur concentration, requires alternative sulfur removal methods. During the course of this study, a high surface gamma alumina-supported ZnO nanocatalyst with a ZnO/-Al2O3 ratio of 12% was developed and tested for its ability to improve the activity of the oxidative desulfurization (ODS) process for the desulfurization of kerosene fuel. Scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) were used to characterize the produced nanocatalyst. In a digital batch baffled reactor (20~80 min), the effectiveness of the synthesized nanocatalyst was tested at different initial concentrations of dibenzothiophene (DBT) of 300~600 ppm, oxidation temperatures (25~70 ℃), and oxidation periods (0.5, 1, and 2 hours). The baffles included in the digital baffled batch reactor resist the swirling of the reaction mixture, thus facilitating mixing. The ODS procedure yielded the maximum DBT conversion (95.5%) at 70 ℃ with an 80-minute reaction time and an initial DBT level of 600 ppm. The most precise values of kinetic variables were subsequently determined using a mathematical modelling procedure for the ODS procedure. The average absolute error of the simulation findings was less than 5%, demonstrating a good degree of agreement with the experimental results acquired from all runs. The optimization of the operating conditions revealed that 99.1% of the DBT can be removed in 140 minutes.