• Title/Summary/Keyword: baculoviral vector

Search Result 4, Processing Time 0.022 seconds

Comparative Biodistribution Study of Baculoviral and Adenoviral Vector Vaccines against SARS-CoV-2

  • Hyeon Dong Lee;Jungmin Chun;Sehyun Kim;Nowakowska Aleksandra;Chanyeong Lee;Doyoung Yoon;Hee-jung Lee;Young Bong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.185-191
    • /
    • 2024
  • Various types of vaccines have been developed against COVID-19, including vector vaccines. Among the COVID-19 vaccines, AstraZeneca's chimpanzee adenoviral vaccine was the first to be commercialized. For viral vector vaccines, biodistribution studies are critical to vaccine safety, gene delivery, and efficacy. This study compared the biodistribution of the baculoviral vector vaccine (AcHERV-COVID19) and the adenoviral vector vaccine (Ad-COVID19). Both vaccines were administered intramuscularly to mice, and the distribution of the SARS-CoV-2 S gene in each tissue was evaluated for up to 30 days. After vaccination, serum and various tissue samples were collected from the mice at each time point, and IgG levels and DNA copy numbers were measured using an enzyme-linked immunosorbent assay and a quantitative real-time polymerase chain reaction. AcHERV-COVID19 and Ad-COVID19 distribution showed that the SARS-CoV-2 spike gene remained predominantly at the injection site in the mouse muscle. In kidney, liver, and spleen tissues, the AcHERV-COVID19 group showed about 2-4 times higher persistence of the SARS-CoV-2 spike gene than the Ad-COVID19 group. The distribution patterns of AcHERV-COVID19 and Ad-COVID19 within various organs highlight their contrasting biodistribution profiles, with AcHERV-COVID19 exhibiting a broader and prolonged presence in the body compared to Ad-COVID19. Understanding the biodistribution profile of AcHERV-COVID19 and Ad-COVID19 could help select viral vectors for future vaccine development.

Efficacy of Recombinant Baculovirus Vector Reconstructed in pcDNA3.1 Vector (pcDNA3.1 벡터에서 재구성된 재조합 Baculovirus 벡터의 효능)

  • Sa, Young-Hee;Choi, Chang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.444-447
    • /
    • 2018
  • Baculovirus expression systems have many known advantages including fast and cost-effective methods to generate large amounts of recombinant proteins in comparison to bacterial expression systems, particularly those requiring complex post-translational modifications. Especially, recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. In this study, baculoviral vectors which were reconstructed from pcDNA3.1 vector, were recombined with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). These recombinant vectors were infected with various cells and cell lines. The baculovirus vector thus developed was analyzed by comparing the metastasis and expression of the recombinant genes with conventional vectors. These results suggest that the baculovirus vector has higher efficiency in metastasis and expression than the control vector.

  • PDF

Transfection and Expression of Reconstructed Genes within Baculoviral Vectors (Baculovirus 벡터내 재구성된 유전자의 전이와 발현)

  • Sa, Young-Hee;Choi, hang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.588-591
    • /
    • 2018
  • Baculovirus was originally isolated from the alfalfa looper and contains a 134-kbp genome with 154 open reading frames (ORF). The major capsid protein VP39 together with some minor proteins forms the nucleocapsid ($21nm{\times}260nm$) that encloses the DNA with p6.9 protein. They are double-stranded, circular, supercoiled DNA molecules in a rod-shaped capsid. Wild-type baculoviruses exhibit both lytic and occluded life cycles that develop independently throughout the three phases of virus replication. Recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. Especially, inclusion of a dominant selectable marker in these baculoviral vectors can express diverse recombinant genes in many cells. Baculoviral vectors were reconstructed with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), protein transduction domain (PTD) gene and so on. These reconstructed vectors were infected into various cell and cell lines. We performed transfection and expression of these recombinant vectors comparison with other control vectors. From this study, we knew that transfection and expression of these recombinant vectors have higher efficacy than any control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF

Analysis of Efficiency of Recombinant pOPINEneo-3C-GFP Vector with p53 Tumor Suppression Gene Inserted (p53 암억제 유전자가 삽입된 재조합 pOPINEneo-3C-GFP 벡터의 효율 분석)

  • Sa, Young-Hee;Choi, Chang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.533-536
    • /
    • 2019
  • Recombinant baculoviruses are widely used to express heterologous genes in cultured insect cells. Recombinant baculoviruses can serve as gene-transfer vectors for expression of recombinant proteins in a wide range of mammalian cell types. Baculovirus system has significant benefits in view of safety, large-scale, and high level of gene expression. In this study, baculoviral vectors which were reconstructed from pOPINEneo-3C-GFP vector, were recombined with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP), and p53 with NcoI and XhoI. These recombinant vectors were infected with various cells and cell lines. The baculovirus vector thus developed was analyzed by comparing the metastasis and expression of the recombinant genes with conventional vectors. These results suggest that the baculovirus vector has higher efficiency in metastasis and expression than the control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF