• Title/Summary/Keyword: bacteriophage SE

Search Result 11, Processing Time 0.025 seconds

Evaluation of Anti-SE Bacteriophage as Feed Additives to Prevent Salmonella enteritidis (SE) in Broiler

  • Kim, K.H.;Lee, G.Y.;Jang, J.C.;Kim, J.E.;Kim, Y.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.3
    • /
    • pp.386-393
    • /
    • 2013
  • This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE) bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2%) of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308) were allotted by randomized complete block (RCB) design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR) at terminal period among treatments (p>0.05). Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05). In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05), and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05). Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics in broilers diet.

Effects of Dietary Supplementation of Bacteriophage on Growth Performance, Nutrient Digestibility, Blood Profiles, Carcass Characteristics and Fecal Microflora in Broilers (육계 사료 내 Bacteriophage의 첨가가 생산성, 영양소 소화율, 혈액 특성, 도체 특성 및 분내 미생물 조성에 미치는 영향)

  • Kim, Seung Cheol;Kim, Jae Won;Kim, Jung Un;Kim, In Ho
    • Korean Journal of Poultry Science
    • /
    • v.40 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • This experiment was conducted to investigate the effects of bacteriophage SE supplementation on growth performance, nutrient digestibility, blood profiles, visceral organ weight, meat quality and excreta microflora in broilers. A total of 340 1-d-old ROSS 308 broilers (mixed gender) with an initial average body weight (BW) of $41.71{\pm}0.16$ g were randomly allotted to 4 treatments with 5 replicate pens per treatment and 17 broilers per pen for 31 days. Dietary treatments were: 1) CON, control diet, 2) SE05, CON+0.05% bacteriophage, SE 3) SE10, CON+0.10% bacteriophage SE, and 4) SE15, CON+0.15% bacteriophage SE. During d 15 to 31, broilers fed SE15 diet had a higher (P<0.05) body weight gain than broilers fed CON diet. Overall, body weight gain in SE10 and SE15 was greater (P<0.05) than that in CON. Apparent total tract nutrient digestibility and blood characteristics did not differ (P>0.05) among treatments. The water holding capacity was increased (P<0.05) in SE15 compared with CON. Other meat quality in terms of pH value, breast muscle color ($L^*$, $a^*$, $b^*$) and drip loss were unaffected by dietary supplementation with bacteriophage SE. The visceral weight of bursa of Fabricius was increased (P<0.05) in broilers fed the bacteriophage SE incorporated diets compared with those fed the CON diet. No difference (P>0.05) was observed in visceral weight of liver, spleen, breast muscle, abdominal fat, gizzard and excreta concentrations of Lactobacillus, Clostridium perfringens, Escherichia coli, and Salmonella. In conclusion, dietary supplementation with 0.10 and 0.15% bacteriophage SE could improve the growth performance, breast muscle water holding capacity and bursa of Fabricius visceral weight in broilers.

Evaluation of Efficacy of Bacteriophage CJø07 against Salmonella enteritidis Infection in the SPF Chicks (박테리오파아지 CJø07의 Salmonella enteritidis 감염에 대한 SPF 병아리에서의 효능 평가)

  • Lim, Tae-Hyun;Lee, Hyun-Jeong;Kim, Myeong-Seob;Kim, Byoung-Yoon;Yang, Si-Yong;Song, Chang-Seon
    • Korean Journal of Poultry Science
    • /
    • v.37 no.3
    • /
    • pp.283-287
    • /
    • 2010
  • In the present study we report in vivo inhibitory potential of single strain of bacteriophage ($CJ{\phi}07$) in day-old SPF chicks experimentally infected with Salmonella enteritidis (SE). The bacteriophages prepared by feed additives and drinking water were given to chicks for 20 days starting prior 10 days before challenge with SE. Chicks were euthanized at 10 days after challenge for quantitative salmonella isolation from intestine and determination of environmental contamination level of salmonella. Bacteriophage therapy as additives in feed and drinking water resulted in significant inhibition of the SE replication in intestines of SPF chickens (P<0.05). In addition, environmental contamination by SE fecal shedding was decreased in bacteriophage-treated birds. Therefore, bacteriophage $CJ{\phi}07$ examined in this study may be a plausible alternative to antibiotics for the reduction of salmonella infection both in poultry.

Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection

  • Choi, In Young;Lee, Ju-Hoon;Kim, Hye-jin;Park, Mi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.12
    • /
    • pp.2151-2155
    • /
    • 2017
  • Bacteriophages have gained substantial attention as biocontrol and biorecognition agents, substituting antibodies. In this study, a Salmonella Enteritidis-specific bacteriophage, KFS-SE1, was isolated, identified, and characterized. This Siphoviridae phage infects S. Enteritidis with high specificity. This phage is highly stable under various pH (5-11), temperature ($4-60^{\circ}C$), and organic solvent conditions. The KFS-SE1 genome consisted of 59,715 bp with 73 predicted open reading frames and 57.14% GC content; it had a complete set of genes required for phage reconstruction. Comparative phylogenetic analysis of KFS-SE1 revealed that it was very similar to the other Salmonella phages in the Siphoviridae family. These characteristics suggest that KFS-SE1 with its high specificity and host lysis activity toward S. Enteritidis may have various potential applications.

Effect of Bacteriophages on Viability and Growth of Co-cultivated Weissella and Leuconostoc in Kimchi Fermentation

  • Kong, Se-Jin;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.558-561
    • /
    • 2019
  • This study aimed to understand the survival and growth patterns of bacteriophage-sensitive Weissella and Leuconostoc strains involved in kimchi fermentation. Dongchimi kimchi was prepared, and Weissella and Leuconostoc were co-cultivated in the dongchimi broth. Weissella cibaria KCTC 3807 growth was accompanied by rapid lysis with an increase in the bacteriophage quantity. Leuconostoc citreum KCCM 12030 followed the same pattern. The bacteriophage-insensitive strains W. cibaria KCTC 3499 and Leuconostoc mesenteroides KCCM 11325 survived longer under low pH as their growth was not accompanied by bacteriophages. The bacteriophage lysate of W. cibaria KCTC 3807 accelerated and promoted the growth of Leuconostoc. Overall, our results show that bacteriophages might affect the viability and population dynamics of lactic acid bacteria during kimchi fermentation.

Circular Permutation of the DNA Genome of Temperate Bacteriophage $\PhiFC1$ from Enterococcus faecalis KBL 703

  • Kim, Young-Woo;Jang, Se-Hwan;Hong, Bum-Shik;Lim, Wang-Jin;Kim, Chan-Wha;Sung, Ha-Chin;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.457-463
    • /
    • 1999
  • The physical map of bacteriophage $\PhiFC1$ DNA was constructed with the restriction endonucleases SalI, BamHI, EcoRI, XbaI, and AvaI. The 40.5-kb DNA restriction map is shown to be circularly permuted representing the headful packaging mechanism of the phage. The DNA restriction fragments containing the packaging initiation site(pac) was localized on the restriction map and the nucleotide sequences of the region were analyzed. Four open reading frames (ORFs), following one another with the same orientation, were found at the region. The 2nd ORF (ORF-ts) has significant amino acid sequence homologies to the previously known terminase small subunits of other bacteriophages. The putative terminase small subunit gene has a presumptive NTP-hydrolysis motif and a helix-turn-helix motif. The cleavage site for the first round of packaging was found to be located at the coding sequence of the putative terminase small subunit gene. The fourth ORF, even if partially sequenced, has a good amino acid sequence homology to the portal vertex proteins of other bacteriophages representing the evolutionarily conserved arrangements of genes near the pac site of this bacteriophage, $\PhiFC1$.

  • PDF

Biological control of Flavobacterium psychrophilum infection in ayu (Plecoglossus altivelis altivelis) using a bacteriophage PFpW-3

  • Kim, Ji Hyung;Park, Se Chang
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.39-43
    • /
    • 2018
  • The efficacy of using a bacteriophage (phage) to control Flavobacterium psychrophilum (F. psychrophilum) infection of ayu (Plecoglossus altivelis altivelis) was evaluated in this study. Intramuscular challenge failed to induce sufficient infection levels; therefore, a newly designed net-scratch challenge method was also used to induce bacterial infection. Administration of phage PFpW-3 in F. psychrophilum-infected ayu showed notable protective effects, increased survival rates and mean times to death. Additionally, the fate of inoculated bacteria and phage in ayu were investigated. Our results suggest that the phage PFpW-3 could be considered an alternative biocontrol agent against F. psychrophilum infections in ayu culture.

Recent Insights into Aeromonas salmonicida and Its Bacteriophages in Aquaculture: A Comprehensive Review

  • Park, Seon Young;Han, Jee Eun;Kwon, Hyemin;Park, Se Chang;Kim, Ji Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1443-1457
    • /
    • 2020
  • The emergence and spread of antimicrobial resistance in pathogenic bacteria of fish and shellfish have caused serious concerns in the aquaculture industry, owing to the potential health risks to humans and animals. Among these bacteria, Aeromonas salmonicida, which is one of the most important primary pathogens in salmonids, is responsible for significant economic losses in the global aquaculture industry, especially in salmonid farming because of its severe infectivity and acquisition of antimicrobial resistance. Therefore, interest in the use of alternative approaches to prevent and control A. salmonicida infections has increased in recent years, and several applications of bacteriophages (phages) have provided promising results. For several decades, A. salmonicida and phages infecting this fish pathogen have been thoroughly investigated in various research areas including aquaculture. The general overview of phage usage to control bacterial diseases in aquaculture, including the general advantages of this strategy, has been clearly described in previous reviews. Therefore, this review specifically focuses on providing insights into the phages infecting A. salmonicida, from basic research to biotechnological application in aquaculture, as well as recent advances in the study of A. salmonicida.

Ecological Characteristics of Bacteriophages Infecting Xanthomonas oryzae pv. oryzae and Their Use as Biocontrol Agents (벼 흰잎마름병균 파지의 생태학적 특성 및 이를 이용한 생물방제)

  • Yu, Sang-Mi;Noh, Tae-Hwan;Kim, Dong-Min;Jeon, Tae-Woog;Lee, Young-Kee;Lee, Se-Won;You, Oh-Jong;Kim, Byung-Seok;Lee, Yong-Hoon
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.90-94
    • /
    • 2011
  • Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a very serious disease in rice growing regions of the world. There are no effective ways of protecting rice from the disease. In this study, the bacteriophage (phage) mixtures infecting Xoo were investigated as biological control agent on BLB. The effects of pH, heat and ultraviolet on the stability of phages were investigated to check and increase the possibility of practical use in the field. Phages were rather stable between pH 5 and pH 10. The infectivity dropped sharply when the phages were incubated at $50^{\circ}C$ and more than 90% of the phages were inactivated after two minutes of ultraviolet treatment. The phages were stable for 7 days at the rice plant leaves, and the phages survived 10 times more than other treatments when mixed with skim milk. Although the skim milk increased the stability of the phages, the control efficacy was not effective. However, the phage mixtures reduced the occurrence of BLB when they were treated with Tecloftalam WP or Acibenzolar-S-methyl simultaneously. The results indicated that the Xoo phages could be used as an alternative control method to increase the control efficacy and reduce the use of agrochemicals.