• Title/Summary/Keyword: bacteriocin-like substance

Search Result 14, Processing Time 0.027 seconds

Effect of Bacteriocin-Like Inhibitory Substance (BLIS) from Enterococcus faecium DB1 on Cariogenic Streptococcus mutans Biofilm Formation

  • Kim, Ni-Na;Kim, Bong Sun;Lee, Han Bin;An, Sunghyun;Kim, Donghan;Kang, Seok-Seong
    • Food Science of Animal Resources
    • /
    • v.42 no.6
    • /
    • pp.1020-1030
    • /
    • 2022
  • The aim of the study was to investigate the effect of bacteriocin-like inhibitory substance (BLIS) from Enterococcus faecium DB1 on cariogenic Streptococcus mutans biofilm. Crystal violet staining, fluorescence, and scanning electron microscopy analyses demonstrated that the BLIS from Enterococcus faecium DB1 (DB1 BLIS) inhibited S. mutans biofilm. When DB1 BLIS was co-incubated with S. mutans, biofilm formation by S. mutans was significantly reduced (p<0.05). DB1 BLIS also destroyed the preformed biofilm of S. mutans. In addition, DB1 BLIS decreased the viability of S. mutans biofilm cells during the development of biofilm formation and in the preformed biofilm. DB1 BLIS significantly decreased the growth of S. mutans planktonic cells. Furthermore, S. mutans biofilm on the surface of saliva-coated hydroxyapatite discs was reduced by DB1 BLIS. Taken together, DB1 BLIS might be useful as a preventive and therapeutic agent against dental caries caused by S. mutans.

Cultural Conditions of Lactococcus sp. 1112-1 for Production of Bacteriocin-like Substance (Bacteriocin을 생산하는 Lactococcus sp. 1112-1의 배양조건)

  • 유진영;이인선;최신양;권동진;정건섭
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 1992
  • Cultural conditions of Lactococcus sp. 1112-1, a bacteriocin producing strain, were studied for enhancing its production with regard to environmental and nutritional factors. Optimal compositions of culture medium for bacteriocin production were glucose 20 g/l as carbon source, casein acid hydrolyzate 15 g/l as nitrogen source, and sodium acetate 3 g/l, ammonium citrate 2 g/l as morganic salt with other basal components. The optimal pH of medium and fermentation temperature were 6.2 and $35^{\circ}C$, respectively. This strain required exclusively riboflavin and pantothenic acid for growth and bacteriocin production. In a 1l batch culture, stationary phase emerged after 8.5 hours of fermentation when 1.81 g/l of biomass was accumulated. The maximum antimicrobial activity was 3,894 IU/ml after 12 hours.

  • PDF

Characterization of Bacteriocin-Like Substances Produced by Bacillus subtilis MJP1 (Bacillus subtilis MJP1이 생산하는 Bacteriocin-Like Substances)

  • Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.339-346
    • /
    • 2007
  • The MJP1 bacterial strain, which possesses antifungal activity, was isolated from meju and identified as Bacillus subtilis based on its morphological and biochemical properties, as well as its 16S rRNA sequence. Antimicrobial activity was found against various species of Gram-positive bacteria, yeasts, and molds, including food-spoilage microorganisms. The antifungal activity was found to be stable after heat and proteolytic enzyme treatment, and in the pH range of $6.0{\sim}10.0$. The antibacterial activity was stable in the pH range of $6.0{\sim}10.0$, but about 50% of the activity was lost after 24 hr at $30^{\circ}C$. The antibacterial compound was also inactivated by proteolytic enzyme treatment, indicating its proteinaceous nature. The apparent molecular masses of the partially purified antifungal and antibacterial compounds, as indicated by using the direct detection method in Tricine-SDS-PAGE, were approximately 2.4 kDa and 4.5 kDa, respectively. These studies suggest that B. subtilis MJP1 produces two bacteriocin-like substances with antifungal and antibacterial activities.

CHARACTERISTICS OF STREPTOCOCCI AND ENTEROCOCCI ISOLATED FROM RUMEN OF MOUFLONS AND EUROPEAN BISONS

  • Laukova, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.1
    • /
    • pp.37-41
    • /
    • 1995
  • Streptococci and enterococci, isolates from the rumen content of mouflons and European bisons were isolated. The total counts of these species reached the values(log 10 ${\pm}$ S.E.M.) $7.3{\pm}0.21$; $6.1{\pm}0.06$ bacteria per one ml of the rumen content in streptococci and $3.6{\pm}0.20$; $3.17{\pm}0.18$ bacteria per one ml of the rumen content in enterococci, Strains isolated were allotted to te species Streptococcus bovis(AM1, AM2, AM3, AM4), Enterococcus faecium(EH1, EFG2, EC3) and Enterococcus faecalis (EFA1, EFD2). Bactera presented belong to the strains with low urease and ${\alpha}$-amylase activities. The majority of isolates were polyresistant. Each strain produced bacteriocin - like substance with effect against at least of one of relatives species as indicators used. The most of inhibition zones were hazy with the width 2-6 mm in diameter.

Development of Antimicrobial Edible Film from Defatted Soybean Meal Fermented by Bacillus subtilis

  • KIM , HYUNG-WOOK;KIM, KYUNG-MI;KO, EUN-JUNG;LEE, SI-KYUNG;HA, SANG-DO;SONG, KYUNG-BIN;PARK, SANG-KYU;KWON, KI-SUNG;BAE, DONG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1303-1309
    • /
    • 2004
  • In order to extend shelf-life of the packaged or coated foods, an antibacterial edible film was developed. Antimicrobial activities of 9 bacteriocin-like substance (BLS)­producing strains were evaluated after growing them on defatted soybean meal medium (DSMM). Bacillus subtilis was selected among those, because it showed the biggest inhibition zone against 6 problem bacteria in food. The antimicrobial edible film, containing $0.32\%$ of BLS, was produced from the fermented soybean meal with B. subtilis at the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. The antimicrobial activity of the film was over $50\%$ of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the soy protein film with BLS was applied on the agar media containing E. coli, the growth inhibition was much higher than the ordinary soy protein film. These results indicate that the soy protein film with BLS from B. subtilis can be used as a new packaging material to extend the shelf-life of foods.

Escherichia coli-Derived Uracil Increases the Antibacterial Activity and Growth Rate of Lactobacillus plantarum

  • Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.975-987
    • /
    • 2016
  • Lactobacillus plantarum (L. plantarum) is a representative probiotic. In particular, L. plantarum is the first commensal bacterium to colonize the intestine of infants. For this reason, the initial settlement of L. plantarum can play an important role in determining an infant's health as well as their eventual health status as an adult. In addition, L. plantarum combats pathogenic infections (such as Escherichia coli (E. coli), one of the early pathogenic colonizers in an unhealthy infant gut) by secreting antimicrobial substances. The aim of this research was to determine how L. plantarum combats E. coli infection and why it is a representative probiotic in the intestine. Consequently, this research observed that E. coli releases uracil. L. plantarum specifically recognizes E. coli-derived uracil, which increases the growth rate and production of antimicrobial substance of L. plantarum. In addition, through the inhibitory activity test, this study postulates that the antimicrobial substance is a protein and can be considered a bacteriocin-like substance. Therefore, this research assumes that L. plantarum exerts its antibacterial ability by recognizing E. coli and increasing its growth rate as a result, and this phenomenon could be one of the reasons for L. plantarum settling in the intestine of infants as a beneficial bacterium.

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Antimicrobial Edible Film Developed from Defatted Corn Germ Meal Fermented by Bacillus subtilis

  • Kim Hyung-Wook;Roh I-Woo;Kim Kyung-Mi;Jang In-Suk;Ha Sang-Do;Song Kyung-Bin;Park Sang-Kyu;Lee Won-Young;Youn Kwang-Sup;Bae Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.597-604
    • /
    • 2006
  • In order to extend the shelf-life of packaged or coated foods, an antibacterial edible film containing 1.8% of BLS was developed from the defatted corn germ meal, which had been fermented with Bacillus subtilis under the optimum condition of pH 7.0-7.5 and $33^{\circ}C$ for 33 h. Water vapor permeability of the fermented film $(88.3mg/cm^2\;h)$ was higher than those of the normal corn germ films $(75.8mg/cm^2\;h)$. Protein solubility of the fermented film was also higher than ordinary corn germ film at the pH range of 3-10. The fermented corn germ film had higher tensile strength and lower % elongation (elongation rate) than the ordinary corn germ film. The antimicrobial activity of the film was more than 50% of the maximum activity after film production with heat treatment at $90^{\circ}C$ and pH adjustment to 9. When the corn germ protein film with bacteriocin-like substance was applied on the mashed sausage media containing E. coli, the bacterial growth inhibition was higher than the ordinary corn protein film.

Optimization of Streptococcus macedonicus MBF10-2 Lysate Production in Plant-based Medium by Using Response Surface Methodology

  • Andyanti, Dini;Dani, Fatin M.;Mangunwardoyo, Wibowo;Sahlan, Muhamad;Malik, Amarila
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.220-233
    • /
    • 2019
  • Bacterial lysates have become a common ingredient for natural health care. Lactic acid bacteria (LAB) could serve as potential candidates for lysate production: the lactic acids produced by LAB have been utilized for their moisturizing, antimicrobial, and rejuvenating effects, while other substances provide topical benefits and health effects for the skin. Our study aimed to obtain lysate from a LAB S. macedonicus MBF 10-2 through an optimized fermentation using the Response Surface Methodology. Strain MBF10-2 was cultivated in a 2L fermenter tank in de Man Rogosa and Sharpe (MRS) medium and in plant-based peptone modified MRS, i.e. Soy-peptone and Vegitone. The duration and the medium composition (dextrose and soy peptone or proteose peptone) were adjusted to obtain an optimum production of cell lysate. Central Composite Design was employed for Design Expert 7.0.0 by adjusting 3 factors: dextrose (1%, 1.5%, 2%, 2.5%, 3%), soy or proteose peptone (0.5%, 0.75%, 1%, 1.25% and 1.5%), and duration of fermentation (8, 10, 12 14, and 16 h for MRS-Soy peptone and 15, 17, 19, 21, and 23 h for MRS Vegitone). Bacteriocin-Like Inhibitor Substance activity of lysate and pH were used as indicators. The optimum condition for lysate production using MRS Soy Peptone and Vegitone are as follows: dextrose concentration 2.5%, plant-based peptone 1.25%, while optimum fermentation duration were 11.18 h (MRS Soy Peptone) and 17 h (MRS Vegitone) with a starter concentration of 10% at $OD_{600nm}$ $0.2{\pm}0.05$. However, the standard MRS medium produced better quality lysate compared to MRS plant-based peptones.