• Title/Summary/Keyword: bacteriocin purification

Search Result 38, Processing Time 0.028 seconds

Characteristics and Partial Purification of a Bacteriocin Produced by Pediococcus damnosus JNU 534 (Pediococcus damnosus JNU 534가 생산하는 박테리오신의 특성 및 정제)

  • Lee, Jae-Won;Han, Su-Min;Yun, Bo-Hyun;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.952-959
    • /
    • 2011
  • A new bacteriocin-producing lactic acid bacteria (LAB) which has been isolated from kimchi was identified as Pediococcus damnosus by use of API kit and 16S rDNA sequencing, and designated as P. damnosus JNU 534. The bacteriocin produced by P. damnosus JNU 534 markedly inhibited the growth of some of LAB and Listeria monocytogenes, whereas other pathogens including Gram negative bacteria were not susceptible. The production of bacteriocin started at the beginning of exponential phase and reached maximum activity at the early stationary phase. The bacteriocin was stable on the wide pH range of 2-9 and heat treatment up to $100^{\circ}C$ for 15 min. The antimicrobial compound was inactivated by treatments of proteolytic enzymes indicating its proteinaceous in nature. The bacteriocin was purified by 30% ammonium sulfate precipitation followed by hydrophobic interaction column and $C_{18}$ column chromatography. The estimated molecular weight of the bacteriocin using tricine SDS-PAGE was approximately 3.4 kDa and the identified N-terminal amino acid sequence was $NH_2$-ILLEELNV.

Characterization of a Bacteriocin Produced by Enterococcus sp. T7 Isolated from Humans

  • Moon, Hi-Seong;Jeong, Jong-Jin;Ji, Geun-Eog;Kim, Jong-Sang;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.507-513
    • /
    • 2000
  • A bacteriocin-producing organism, Enterococcus sp. T7, was isolated from human fecal samples. Bacteriocin T7, named tentatively as the bacteriocin, was produced by Enterococcus sp. T7 and it inhibited some strains of Lactobacillus. Staphylococcus, Enterococcus, and Streptococcus, but not all the lactococci and gram-negative bacteria tested. Bacteriocin T7 inhibited the growth of Listeria monocytogenes Scott A, but the degree of inhibition was less than those for other sensitive gram-positive vacteria. Bacteriocin T7 in MRS broth started to produce at the middle of the exponential growth phase and the inhibitory activity reached its maximum level during the stationary growth phase. Bacteriocin T7 was stable against heat treatments, pH variations (pH 2-10), and exposure to organic solvents. The molecular weight of bacteriocin T7 was estimated to be 6.500 Da by SDS-PAGe. All these facts, including physico-chemical stabilities, small molecular size, and inhibition of Kisteria monocytogenes, indicate that bacteriocin T7 is likely to be a member of the class IIa bacteriocins.

  • PDF

Purification and Characterization of an Antilisterial Bacteriocin Produced by Leuconostoc sp. W65

  • Oh, Se-Jong;Kim, Myung-Hee;Churey, John-J.;Worobo, Randy-W.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.680-686
    • /
    • 2003
  • This study was carried out to characterize the antilisterial substances produced by Leuconostoc sp. W65 and to evaluate the effects of pH, temperature, and time on inhibitory activity using response surface methodology. Leucocin W65, an antilisterial substance produced by Leuconostoc sp. W65, markedly inhibited the growth of Listeria monocytogenes, L. innocua, and L. ivanovii, whereas other pathogens including Gram-negative bacteria were not susceptible. The pH was the most effective factor with regard to bacteriocin activity, while temperature and time of heat treatment had no significant effect. Fifty percent of inhibitory activity remained after 22.8 min at pH 4.2 and $121^{\circ}C$. Leucocin W65 was purified by ammonium sulfate precipitation, hydrophobic interaction chromatography, and tricine-SDS-PAGE. Compositional analysis originally estimated the peptide to be 56 amino acids in length without asparagine, glutamine, and tryptophane. The sequence of partial N-terminal amino acid residues of purified bacteriocin was identified as follows: $NH_{2}-XGXAGVXPXGGQQPXVPLXYP$.

Screening and Partial Purification of Bacteriocins by Strains of Lactobacillus acidophilus Isolated from Human Origin (인체에서 분리된 Lactobacillus acidophilus가 생산하는 박테리오신의 선별과 정제)

  • Kim, Se-Heon;Kim, Yeong-Gyo;Gilliland, S.E.
    • Journal of Dairy Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 1997
  • Lactobacillus acidophilus 223, 606, and NCFM-F among 21 isolated from fecal contents of humans demonstrated inhibitory activity attributed to bacteriocin(s). The bacteriocin(s) were heat stable and nondialyzable proteinous compounds and exhibited narrow inhibitory spectra of activity. Neither hydrogen peroxide nor pH were responsible for inhibitory action. All of the producer strains were resistant to their own bacteriocin(s). The bacteriocin(s) were purified by ammonium sulfate precipitation, gel chromatography and ion exchange chromatography for further characterization. The bacteriocin(s) of human origin exhibited similar characteristics.

  • PDF

Characterization and Purification of Subtilosin A Produced by Bacillus vallismortis MCBL 1012 Isolated from Seasoned Dried Radish

  • Se-Yeon Lee;Dae-Ook Kang
    • Journal of Life Science
    • /
    • v.34 no.8
    • /
    • pp.576-587
    • /
    • 2024
  • In this study, diverse bacterial strains were isolated from fermented foods to screen those with antibacterial activity. Among them, one strain, identified as Bacillus vallismortis MCBL 1012 through 16S rRNA gene sequence analysis, was selected for its bacteriocin production. The culture supernatant of B. vallismortis MCBL 1012 showed antibacterial activity, mainly against Gram-positive bacteria. Scanning electron microscopy (SEM) revealed that bacteriocin treatment led to cellular content leakages in Listeria monocytogenes KCCM 40307, Enterococcus faecium KCCM 12118, and Streptococcus mutans KCTC 3065. PCR analysis confirmed B. vallismortis MCBL 1012 harbored subtilosin A gene (sbo A). Antibacterial activity was decreased by proteolytic enzymes like proteinase K, subtilisin A, and α-chymotrypsin. The bacteriocin demonstrated stability at 40℃ and 60℃ for 120 min, and up to 80℃ for 60 min, with rapid activity loss at 100℃. It retained full antibacterial activity within a pH range of 4.0 to 8.0 and was not affected by up to 100% organic solvents like ethanol, methanol, acetonitrile, and tetrahydrofuran. Nevertheless, activity decreased with more than 40% isopropanol and 80% acetone. Most tested inorganic salts and detergents had no effect on antibacterial activity except, CuSO4 and NiSO4 at specified concentrations. The bacteriocin exerted its antibacterial effect through bactericidal action against L. monocytogenes KCCM 40307. The bacteriocin was purified by ammonium sulfate precipitation, DEAE anion exchange chromatography, and RP-HPLC. The purification resulted in a final yield of 0.03% and a 283.7-fold increase in specific activity. MALDI-TOF MS analysis determined the exact molecular weight of purified bacteriocin to be 3,326.1 Da.

Characterization of the Bacteriocin from Enterococcus faecium CJNU 2008 (Enterococcus faecium CJNU 2008 균주 생산 박테리오신의 특성 규명)

  • Seo, Souk-Jin;Yang, Jung-Mo;Moon, Gi-Seong
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.516-520
    • /
    • 2018
  • Bacteriocin is a proteinaceous compound produced by microorganisms showing antimicrobial activities. In this study, the physicochemical properties of the bacteriocin produced by Enterococcus faecium CJNU 2008 strain were characterized. Partially purified bacteriocin showed stabilities against heat treatments at $100^{\circ}C$ for 30 min and $121^{\circ}C$ for 15 min and against solvents treatments such as methanol, ethanol, acetone, acetonitrile and chloroform. The bacteriocin also exhibited stabilities against lipase and ${\alpha}-amylase$ treatments but the stability was abolished at protease treatment, indicating that the antimicrobial agent from E. faecium CJNU 2008 was a proteinaceous bacteriocin. The bacteriocin also showed bactericidal mode of action against Listeria monocytogenes. The molecular mass of the bacteriocin was estimated to be under 6.5 kDa by a tricine-SDS-PAGE analysis. The bacteriocin was purified by HPLC. Further studies toward biochemical analysis of the bacteriocin are needed in near future.

Purification and Characterization of Lacticin NK34 Produced by Lactococcus lactis NK34 against Bovine Mastitis (Lactococcus lactis NK34에 의해 생산된 소 유방염 원인균에 효과가 있는 lacticin NK34의 정제 및 특성)

  • Lee, Na-Kyoung;Park, Yeo-Lang;Kim, Hyoun-Wook;Park, Yong-Ho;Rhim, Seong-Lyul;Kim, Jong-Man;Kim, Jae-Myung;Nam, Hyang-Mi;Jung, Suk-Chan;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.457-462
    • /
    • 2008
  • Lactococcus lactis NK34, isolated from jeotgal (Korean traditional fermented fish), produces bacteriocin against bovine mastitis pathogens such as Staphylococcus aureus 7, S. aureus 8, Staphylococcus chromogenes 10, S. chromogenes 19, Staphylococcus hominis 9, Streptococcus uberis E290, Enterococcus faecium E372, Streptococcus agalactiae ATCC 13813, Pseudonocardia autotrophia KCTC 9455, and Staphylococcus simulans 78. Lacticin NK34 was inactivated by protease XIV but not by protease IX, protease XIII, proteinase K, $\acute{a}$-chymotrypsin, trypsin, and pepsin. Also, lacticin NK34 was stable over a pH range of 2 to 9 for 4 hr and withstood exposure to temperatures of 30-$100^{\circ}C$ for 30 min. Lacticin NK34 showed bactericidal effects against S. simulans 78. This bacteriocin was purified using ammonium sulfate precipitation, ion exchange chromatography, ultrafiltration, and hydrophobic chromatography. Tricin-SDS-PAGE of purified bacteriocin gave the same molecular weight (3.5 kDa) as nisin. The gene encoding this bacteriocin was amplified by PCR using nisin gene-specific primers. It showed similar sequences to this nisin Z gene. These results indicate that lacticin NK34 is a nisin-like bacteriocin, and could be used as an antimicrobial alternative for livestock.

Bacteriocins: Assay, Biochemistry, and Mode of Action

  • Paik, Hyun-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.2
    • /
    • pp.269-277
    • /
    • 1996
  • Bacteriocins are proteins produced by a heterogeneous group of bacteria that have a bactericidal effect on closely related organisms. Recently, bacteriocins from lactic acid bacteria and other food-related organisms have been the subject of much research because of their potential as food biopreservatives. Various modifications of agar plate diffusion assays are the most widely used methods even though the limitations of such assays are generally recognized. The ability to obtain a concentrated crude preparation on bacteriocin by optimizing production parameters greatly simplifies recovery of bacteriocin on subsequent purification steps. Some studies performed to optimize bacteriocins have been purified to homogeneity, and the amino acid sequences of many of these purified bacteriocins have been determined. Obtaining characterization data on purified bacteriocin will minimize the risk of overlapping of research and confusion on identification of these compounds. Several me-chanisms leading to cell death have been hypothesized. These include depletion of the proton motive force(PMF) across the cell membrane: RNase and/or DNase activity within the sensitive cell; and pore formation and lysis of sensitive cells at the cell membrane.

  • PDF

Characterization of Subtilein, a Bacteriocin from Bacillus subtilis CAU131 (KCCM 10257)

  • Park, Sung-Yong;Yang, Yong-Jae;Kim, Young-Bae;Hong, Jae-Hoon;Lee, Chan
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.228-234
    • /
    • 2002
  • Bacillus subtilis CAU131 (KCCM 10257) isolated from a fermented shrimp product produces subtilein, tentatively named as a bacteriocin, which exhibited a bactericidal effect against closely related species such as Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 11778, and several other strains of Bacillus sp. The purification of the subtilein was achieved by applying a mono-Q anion exchange chromatography on FPLC and $C_18$ reverse-phase chromatography on HPLC. After purification, specific activity of subtilein was increased about 3,000-fold compared with culture broth and its molecular mass was about 5,000 Da on SDS-PAGE. The antimicrobial activity of subtilein was well maintained at acidic and neutral pHs between 3 and 8. Subtilein was relatively heat stable, and its antimicrobial activity remained for 2 h at $80^{\circ}C$. However, the activity was reduced after heating at $100^{\circ}C$, and about $80\%$ of the activity was found after 1 h incubation at $100^{\circ}C$. The treatment of Bacillus subtilis ATCC 6633 with subtilein led to morphological changes in stationary-phase cells and most cells appeared to be lysed.