• Title/Summary/Keyword: bacterial wilt disease

Search Result 108, Processing Time 0.028 seconds

Suppression of Bacterial Wilt with Bacillus subtilis SKU48-2 Strain (Bacillus subtilis SKU48-2에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Kim, Shin-Duk
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • Bacterial populations from the rhizosphere were obtained and the efficacy of the bacterial wilt suppression, root colonizing ability and resistance to three kinds of chemical pesticides were assayed. According to these results, SKU48-2 was selected as a potential biological agent to control the bacterial wilt caused by Ralstonia solanacearum. SKU48-2 strain at $10^8CFU/ml$ inoculum was able to suppress the bacterial wilt up to 60% in greenhouse trials. Also, the resistance of SKU48-2 to chemical pesticides make possible to use in combination with chemical pesticides for the control of bacterial wilt. Three different powder formulations of SKU48-2 were developed. The shelf-life of powder formulations was effective up to 6 months of storage. Unformulated bacterial suspension could not be stored for 2 weeks, at which time cell viability was completely lost. According to 16S rDNA sequence data, the SKU48-2 stain was identified as Bacillus subtilis.

A Screening Method on Resistance of Tobacco Plants to Bacterial Wilt (세균성마름병에 대한 담배의 저항성검정 방법)

  • 이영근
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • Three kinds of inoculation methods, capillary, root cutting and dipping were compared for an efficient way to screening the resistant tobacco variety against bacterial wilt, Ralstonia solanacearum. The pricking a capillary tube contained the pathogenic bacterial suspension(10$^{7}$ cfu/$m\ell$) to an axillary bud of each tobacco plant showed different resistance well between varieties. The less period was required in inoculating work and in disease development for the inoculation method used with capillary tube than for two other inoculation methods tested also.

Protection of Tobacco Plants from Bacterial Wilt with an Avirulent Isolate of Pseudomonas solanacearum (비병원성 Pseudomonas solanacearum을 이용한 담배 세균성마름병의 방제)

  • Yi Y. K.;Kim J. H.;Park W. M.
    • Korean Journal Plant Pathology
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 1985
  • Microbial antagonism between virulent and avirulent isolates of Pseudomonas solanacearum was studied in relation to the control of bacterial wilt of tobacco. In nutrient broth media or in soil, the avirulent isolate of P. solanacearum grew faster than did the virulent one. Inhibitory effect of avirulent isolate against growth of virulent one was negligible in mixed culture of the two isolates. The disease severity of bacterial wilt was significantly reduced when the roots of cultivar BY 4 susceptible to bacterial wilt was dipped in suspension of an avirulent isolate for 6 hours prior to transplanting to the soil infested with virulent bacteria. When the seedlings of tobacco were poured with the suspension of an avirulent isolate onto the soil in pre-planting pots 24 hours before ransplanting, there was a significant reduction in disease severity in the field. However, the reduction was noticed until early July, but after middle of July, no difference between the avirulent isolate-treated and non-treated plants was found in severity of the bacterial wilt.

  • PDF

Isolation, Identification and Biological Control Activity of SKU-78 Strain against Ralstonia solanacearum (풋마름병균, Ralstonia solanacearum의 길항세균 SKU-78 균주의 분리 동정 및 특성)

  • Sung, Pil-Je;Shin, Jeong-Kun;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.48-52
    • /
    • 2005
  • Six stains of plant growth promoting rhizobacteria were selected through germinating seed assay and root colonization assay. Among them, SKU-78 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 60% reduction of bacterial wilt disease compared with the control. It was suggested that SKU-78 strain activated the host defense systems in plants, based on lack of direct antibiosis against pathogen. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, SKU-78 stain was identified as Bacillus sp. SKU-78.

Effects of a Soil-Born Paenibacillus spp. Strain KPB3 on Suppression of Bacterial Wilt Disease Caused by Ralstonia solanacearum (토양에서 분리한 Paenibacillus spp. KPB3의 Ralstonia solanacearum에 의한 세균성 풋마름병 억제 효과)

  • Suk, Jung-Ki;Ipper, Nagesh S.;Lee, Seon-Hwa;Shrestha, Anupama;Park, Duck-Hwan;Cho, Jun-Mo;Hur, Jang-Hyun;Kim, Byung-Sup;Lim, Chun-Keun
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.4
    • /
    • pp.313-319
    • /
    • 2006
  • Two hundred bacterial strains were isolated from the soil around healthy tomato plants in a polyvinyl house, where most of the other plants showed bacterial wilt symptoms. The strains were screened in vitro for their antibacterial activity. Among them, a strain, KPB3 showed strong bactericidal activity against bacterial wilt pathogen, Ralstonia solanacearum. The strain KPB3 was identified using physiological and biochemical tests, and 16S rRNA analyses. Based on these tests, the strain was found to be closer to genus Paenibacillus. To control the bacterial wilt caused by R. solanacearum, greenhouse experiments were conducted to determine the effectiveness of the Paenibacillus strain KPB3. Drench application of this strain ($4{\times}10^8$ CFU $mL^{-1}$) into the pots containing tomato plants, post-inoculated with the pathogen, R. solanacearum could drastically reduce the disease severity, compared to the non-treated plants. To evaluate effectiveness of this strain under field conditions, experiments were carried out in polyvinyl houses infested with R. solanacearum, during spring and autumn of the year 2006. It was observed that, during spring, bacterial wilt was more prevalent compared to the autumn. During spring, 50.9% disease incidences occurred in non-treated controls, while, Paenibacillus strain KPB3 treated plants showed 24.6% disease incidences. Similarly, during autumn, around 17.2% plants were infected with bacterial wilt in non- treated polyvinyl houses, compared to the Paenibacillus strain KPB3 treated plants, which showed 7.0% disease incidences. These results demonstrated that, Paenibacillus strain KPB3 is a potential biological control agent against bacterial wilt caused by R. solanacearum, effective under greenhouse as well as field conditions. This is the first report showing biocontrol of R. solanacearum using a Paenibacillus spp. under field conditions.

Analysis of Bacterial Wilt Symptoms using Micro Sap Flow Sensor in Tomatoes (식물 생체정보 센서를 활용한 토마토 풋마름병 증상 분석)

  • Ahn, Young Eun;Hong, Kue Hyon;Lee, Kwan Ho;Woo, Young Hoe;Cho, Myeong Cheoul;Lee, Jun Gu;Hwang, Indeok;Ahn, Yul Kyun
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.212-217
    • /
    • 2019
  • Bacterial wilt caused by Ralstonia solanacearum is a major disease that affects tomato plants widely. R. solanacearum is a soil born pathogen which limits the disease control measures. Therefore, breeding of resistant tomato variety to this disease is important. To identify the susceptible variety, degree of disease resistance has to be determined. In this study, micro sap flow sensor is used for accurate prediction of resistant degree. The sensor is designed to measure sap flow and water use in stems of plants. Using this sensor, the susceptibility to bacterial wilt disease can be identified two to three days prior to the onsite of symptoms after innoculation of R. solanacearum. Thus, this find of diagnosis approach can be utilized for the early detection of bacterial wilt disease.

Resistance Evaluation of Tomato Germplasm against Bacterial Wilt by Ralstonia solanacearum (토마토 유전자원의 Ralstonia solanacearum에 의한 풋마름병 저항성 평가)

  • Jung, Eun Joo;Joo, Hae Jin;Choi, Soo Yeon;Lee, Seung Yeup;Jung, Yong Hoon;Lee, Myung Hwan;Kong, Hyun Gi;Lee, Seon-Woo
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.253-258
    • /
    • 2014
  • This study was conducted to evaluate tomato plant resistance against bacterial wilt by Ralstonia solanacearum using tomato cultivars or tomato breeding lines maintained in RDA-Genebank of Rural Development Administration and to select resistant tomato lines for breeding purpose. We evaluated the disease responses of a total of 13 cultivars and 39 breeding lines from RDA-Genebank using R. solanacearum SL341 strain, which is a representative strain in Korea. Tomato cultivar Hawaii 7996 and Moneymaker were used as a resistant control plant and a susceptible control plant, respectively. A total of 32 cultivars were susceptible and 10 cultivars showed various disease response suggesting resistant phenotype segregation in the lines. Five commercial cultivars and 5 breeding lines exhibited strong resistance to bacterial wilt by the SL341 strain. These 5 breeding lines might be used for further study of plant defense response against bacterial wilt and cloning of the resistance gene from tomato plants. Ultimately, the selected lines could be used for tomato breeding to generate bacterial wilt resistant tomato plants.

Isolation of Potato StACRE Gene and Its Function in Resistance against Bacterial Wilt Disease (감자유전자 StACRE의 분리 및 풋마름병 저항성 기능 검정)

  • Park, Sang-Ryeol;Cha, Eun-Mi;Kim, Tae-Hun;Han, Se-Youn;Hwang, Duk-Ju;Ahn, Il-Pyung;Cho, Kwang-Soo;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.177-183
    • /
    • 2012
  • Bacterial wilt (brown rot) caused by Ralstonia solanacearum (Rs) is one of the most devastating bacterial plant diseases in potatoes. To isolate bacterial wilt disease resistance-related genes from the potato, the StACRE (HM749652) gene was isolated and a sequenced search was performed using functional orthologs of Solanaceae from potatoes. StACRE is homologous to the tobacco NtACRE 132 protein and belongs to the ATL family involved in ubiquitination. To analyze the expression pattern of this gene, RT-PCR was performed with potato treated with salicylic acid (SA) and Rs (KACC 10722). StACRE was strongly induced 3 hours after treatment with SA and 12 hours after infection with Rs. To investigate its biological functions in the potato, we constructed a vector for overexpression in the potato by the Gateway system, and then generated transgenic potato plants. The gene expression of transgenic potato was analyzed by northern blot analysis. In the results of disease resistance assay in relation to bacterial wilt, StACRE overexpressed transgenic potato plants were shown to have more resistance than wild-type potato.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

  • Chandrasekaran, Murugesan;Subramanian, Dharaneedharan;Yoon, Ee;Kwon, Taehoon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.216-227
    • /
    • 2016
  • Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.