• Title/Summary/Keyword: bacterial sp

Search Result 807, Processing Time 0.04 seconds

Isolation of Antagonistic Bacteria against Major Diseases in Panax ginseng C.A. Meyer (인삼 주요병에 대한 길항미생물 선발)

  • Chung, Ki-Chae;Kim, Chang-Bae;Kim, Dong-Ki;Kim, Bok-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.4
    • /
    • pp.202-205
    • /
    • 2006
  • Ginseng is major medicinal plant in Korea. Because of its long cultivation period the yield losses of 5 years of ginseng is 50% due to various diseases. The objective of this study is to select potential biocontrol agents. As the result of research so far achieved to contribute to rational prevention of ginseag plant disease for the stable cultivation of ginseng, three bacterial strains, Streptomyces lauretii strain B8180, Bacillus subtilis strain 8856, and Burkholderia cepacia strain 7944 were isolated from oak leaf compost. The strains showed antagonistic activities against five ginseng pathogenic fungi (Cylindrocarpon destructans, Rhizoctonia solani, Phytophthora cactorum, Botrytis cinerea, Fusarium solani f. sp. panacis) and control effects on Phytophthora blight.

Differentiation of Salmonella typhimurium from Gram-negative Intestinal Microbes by Randomly Amplified Polymorphic DNA (RAPD) Fingerprinting

  • Jin, Un-Ho;Chung, Tae-Wook;Kim, June-Ki;Nam, Kyung-Soo;Ha, Sang-Do;Kim, Cheorl-Ho
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.8-10
    • /
    • 2000
  • In order to rapidly identify and differentiate Salmonella typhimurium from the intestinal gram-negative bacteria, randomly amplified polymorphic DNA (RAPD) fingerprinting of Salmonella typhimurium was carried out using random primers designated OPA-13 (5'-CAGCACCCAC-3'), OPB-10 (5'-CGTCTGGGAC-3'), OPB-18 (5'-CCACAGCAGT-3'), and OPJ-10 (5'-AAGCCCGAGG-3'), and its patterns compared with 6 representive intestinal, gram-negative bacterial strains, Vibrio parahaemolyticus, V. vulnificus, Enterobacter cloacae, Escherichia coli O157:H7, Pseudomonas aeruginosa, and Proteus sp., which are often found in foods. S. typhimurium had unique and distinct fingerprinting patterns. RAPD fingerprinting is thus concluded to be a rapid and sensitive method for the identification of S. typhimurium compared to conventional culturing procedures or immunoassays.

  • PDF

Distribution of Extracellular Proteases from Various Vibrio Species (비브리오속 균주들에서외 세포의 효소의 분포)

  • 차재호;김윤희;정초록;김수광;양지영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.222-227
    • /
    • 2001
  • The members of the genus Vibrio include harmless aquatic strain as well as strains capable of causing infections in human and fish. Pathogenic mechanisms are only understood for Vibrio cholerae O1 and O139 and not for the majority of Vibrio species. Twelve clinical and nonclinical strains were examined by in vitro and in vivo experiments for the importance of extracellular enzymes as a virulence determinant of Vibrio species. In vivo cytotoxicity assay was performed by injecting approximately $10^{8}$ cells/mL into mice (BALB/c). V. harvyi and V. vulnificus showed 100% lethality within 3hr after bacterial injection. V. fluvialis and four strains of V. parahaemolyticus showed 50% lethality within 4hr. V. mimicus, V. alginolyticus and V. furnissii revealed 30% lethality within 9hr. Nonclinical strains, V. campbellii and V. ordalii, did not show any lethality. In vitro protease and hemolytic activities were also good indicators for clinical and nonclinical strains of Vibrio species. The clinical strains showed much higher activities than nonclinical strains. The activity of some clinical strains of re-isolates was evidently increased. Most clinical strains had $\beta$ hemolytic activity. The results demonstrate that the prevalent distribution of extracellular proteases in pathogenic Vibrio sp. implies their importance as a virulence determinant.

  • PDF

Purification and Properties of Chitosanase from Chitinolytic $\beta$-Proteobacterium KNU3

  • Yi, Jae-Hyoung;Jang, Hong-Ki;Lee, Sang-Jae;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.337-343
    • /
    • 2004
  • A bacterial strain concurrently producing extracellular chitosanase and chitinase was isolated from soil and identified as a member of the $\beta$-subgroup of Proteobacteria through its 16S rRNA analysis and some biochemical analyses. The newly discovered strain, named as KNU3, had 99% homology of its 16S rRNA sequence with chitinolytic $\beta$-Proteobacterium CTE108. Strain KNU3 produced 34 kDa of chitosanase in addition to two chitinases of 68 kDa and 30 kDa, respectively. The purified chitosanase protein (ChoK) showed activity toward soluble, colloidal, and glycol chitosan, but did not exhibit any activity toward colloidal chitin. The optimum pH and temperature of ChoK were 6.0 and $70^{\circ}C$, respectively. The chitosanase was stable in the pH 4.0 to 8.0 range at $70^{\circ}C$, while enzyme activity was relatively stable at below $45^{\circ}C$. MALDI-TOF MS and N-terminal amino acid sequence analyses indicated that ChoK protein is related to chitosanases from Matsuebacter sp. and Sphingobacterium multivorum. HPLC analysis of chitosan lysates revealed that glucosamine tetramers and hexamers were the major products of hydrolysis.

Nucleotide Sequence of an Extracellular Phospholipase D Gene from Streptomyces somaliensis and Transphosphatidylation Activity of Its Enzyme (Streptomyces somaliensis가 생산하는 세포외 Phospholipase D의 유전자 서열 분석과 Transphosphatidylation 활성 특성)

  • Jeong Sujin;Lee Sun-Hee;Uhm Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.211-216
    • /
    • 2004
  • A bacterial strain JE-ll found to produce active extracellular phospholipase D (PLD) was selected from the soil isolates. It was identified as Streptomyces somaliensis on the basis of 16S rDNA sequence analysis, morphological and physiological characteristics. The gene (sspld) encoding S. somaliensis PLD was isolated and characterized. The open reading frame was suggested to encode 538 amino acids with a signal peptide of 33 amino acids. The deduced amino acid sequence of the sspld shared a sequence similarity of 70-88% with PLDs of other Streptomyces sp. so far reported. The PLD converted phosphatidylcholine to phosphatidylglycerol or phosphatidylserine with the yield of 96 to 99% (㏖/㏖), but did not act on inositol or ethanolamine as a transphosphatidylation donor.

Earthworm Enhanced Bioaugmentation of PCB Contaminated Soil

  • Crowley, David E.;Luepromchai, Ekawan;Singer, Andrew S.;Yang, Chang Sool
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.100-107
    • /
    • 2000
  • In a recently developed strategy for in-situ treatment of polychlorinated biphenyls (PCB), bioaugmentation was used in conjunction with a surfactant, sorbitan trioleate, as a carbon source for the degrader bacteria, along with the monoterpene, carvone, and salicylic acid as inducing substrates. Two bacteria were used for soil inoculants, including Arthrobacter sp. st. B1B and Ralstonia eutrophus H850. This methodology achieved 60% degradation of PCBs in Aroclor 1242 after 18 weeks in soils receiving 34 repeated applications of the degrader bacteria. However, an obvious limitation was the requirement for soil mixing after every soil inoculation. In the research reported here, bioaugmentation and biostimulation treatment strategies were modified by using the earthworm, Pheretima hawayana, as a vector for dispersal and mixing of surface-applied PCB-degrading bacteria and soil chemical amendments. Changes in microbial biomass and microbial community structure due to earthworm effects were examined using DNA extraction and PCR-DGGE of 16S rDNA. Results showed that earthworms effectively promoted biodegradation of PCBs in bioaugmented soils to the same extent previously achieved using physical soil mixing, and had a lesser, but significant effect in promoting PCB biodegradation in biostimulated soils treated with carvone and salicylic acid. The effects of earthworms were speculated to involve many interacting factors including increased bacterial transport to lower soil depths, improved soil aeration, and enhanced microbial activity and diversity.

  • PDF

Simple and Rapid Extraction of a Bacteriocin Produced by Streptococcus parauberis Z49 from Fermented Cultures (발효배양액에서 Streptococcus parauberis Z49균주가 생산하는 Bacteriocin의 간편한 추출)

  • Park, Hong-Je;Khang, Yong-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.291-295
    • /
    • 2010
  • A novel bacteriocin produced by Streptococcus parauberis Z49 strain was characterized and efficiently extracted from fermented cultures by use of aqueous two-phase systems. The nisin-like bacteriocin, which was active even after a heat treatment at $121^{\circ}C$ for 15 min and in the broad pH range from 2 to 12, showed inhibition of bacterial growth of Micrococcus luteus, Lactobacillus spp., Lactobacillus fermentum, Enterococcus faecium, Listereia monocytogenes, and Pseudomonas fluorescens. Optimal conditions of PEG 600/$Na_2SO_4$ aqueous two-phase systems for the simple and rapid extraction of a novel bacteriocin were determined to be PEG 600 15%, $Na_2SO_4$ 30%, and NaCl 8%, where the bacteriocin was concentrated in PEG layer.

Cultivation-Dependent and -Independent Characterization of Microbial Community Producing Polyhydroxyalkanoates from Raw Glycerol

  • Ciesielski, Slawomir;Pokoj, Tomasz;Klimiuk, Ewa
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.853-861
    • /
    • 2010
  • High substrate costs decrease the profitability of polyhydroxyalkanoates (PHAs) production, and thus low-cost carbon substrates coming from agricultural and industrial residuals are tested for the production of these biopolymers. Among them, crude glycerol, formed as a by-product during biodiesel production, seems to be the most promising source of carbon. The object of this study was to characterize the mixed population responsible for the conversion of crude glycerol into PHAs by cultivation-dependent and -independent methods. Enrichment of the microbial community was monitored by applying the Ribosomal Intergenic Spacer Analysis (RISA), and the identification of community members was based on 16S rRNA gene sequencing of cultivable species. Molecular analysis revealed that mixed populations consisted of microorganisms affiliated with four bacterial lineages: ${\alpha}$, ${\gamma}$-Proteobacteria, Actinobacteria, and Bacteroides. Among these, three Pseudomonas strains and Rhodobacter sp. possessed genes coding for polyhydroxyalkanoates synthase. Comparative analysis revealed that most of the microorganisms detected by direct molecular analysis were obtained by the traditional culturing method.

Fungal Endophytes from Three Cultivars of Panax ginseng Meyer Cultivated in Korea

  • Park, Sang-Un;Lim, Hyoun-Sub;Park, Kee-Choon;Park, Young-Hwan;Bae, Han-Hong
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • In order to investigate the diversity of endophytes, fungal endophytes in Panax ginseng Meyer cultivated in Korea were isolated and identified using internal transcribed spacer (ITS) sequences of ribosomal DNA. Three cultivars of 3-year-old ginseng roots (Chunpoong, Yunpoong, and Gumpoong) were used to isolate fungal endophytes. Surface sterilized ginseng roots were placed on potato dextrose agar plates supplemented with ampicilin and streptomycin to inhibit bacterial growth. Overall, 38 fungal endophytes were isolated from 12 ginseng roots. According to the sequence analysis of the ITS1-5.8S-ITS2, 38 fungal isolates were classified into 4 different fungal species, which were Phoma radicina, Fusarium oxysporum, Setophoma terrestris and Ascomycota sp. 2-RNK. The most dominant fungal endophyte was P. radicina in 3 cultivars. The percentage of dominant endophytes of P. radicina was 65.8%. The percentage of colonization frequency of P. radicina was 80%, 52.9%, and 75% in Chunpoong, Yunpoong, and Gumpoong, respectively. The second most dominant fungal endophyte was F. oxysporum. The diversity of the fungal endophytes was low and no ginseng cultivar specificity among endophytes was detected in this study. The identified endophytes can be potential fungi for the production of bioactive compounds and control against ginseng pathogens.

Isolation and Characteristics of Fucoidan Degrading Bacterium from Marine (해양으로부터 fucoidan 분해세균의 분리 및 특성)

  • Lee, Yu-Ri;Lim, Jong Min;Kim, Ki-Young;Mun, Sung-Bae;Kwak, Inseok;Sohn, Jae Hak
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1724-1728
    • /
    • 2012
  • A marine bacterial strain that degraded fucoidan from Ecklonia cava was isolated from seawater. The crude fucoidanase of this strain efficiently degraded fucoidan at pH 8 and $50^{\circ}C$. The crude enzyme hydrolyzed 7.1% (w/w) fucoidan within 24 hrs from an 1% (w/v) fucoidan solution and produced oligosaccharides by endo-type hydrolysis as the reaction products. The results of 16S rRNA gene sequence analysis and biochemical tests permitted a tentative identification of strain SB 1493 as a Pseudoalteromonas species.