• Title/Summary/Keyword: bacterial multidrug resistance

Search Result 43, Processing Time 0.034 seconds

Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria

  • Choi, Sang Hwa;Shin, Hea Soon
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.286-290
    • /
    • 2017
  • Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are highly dangerous nosocomial pathogens, cause the symptoms of skin infections, pressure sores, sepsis, blood stream and wound infections. Unfortunately, these pathogens are immune to the most common antibiotics, such as, carbapenem, aminoglycoside and fluoroquinolone. Therefore, it is imperative that new and effective antibiotics be developed. In the present study, the antimicrobial effects of Aloe vera MAP (modified Aloe polysaccharide) on Staphylococcus aureus and Bacillus subtilis, Escherichia coli and Enterobacter aerogenes, and clinical Pseudomonas aeruginosa and clinical Acinetobacter baumannii were comprehensibly investigated. Prior to the growth inhibition effect measurement and antibiotic disc diffusion assay on gram-positive and gram-negative bacteria and selected multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, antimicrobial resistance screening was performed for the multidrug-resistant bacteria obtained from clinical isolates. The results for showed the Aloe vera MAP had a concentration-dependent effect on all of examined bacteria, particularly on Pseudomonas aeruginosa. Anti-inflammatory and anti-oxidant experiments were also performed dose dependently effects to confirm the beneficial physiological effects of Aloe vera MAP.

Detection of Vancomycin Resistance Genes and Antibiotic Resistance Characteristics of Enterococcus spp. Isolated from Inland Pollution Sources Near Shellfish Farms on the West Coast of South Korea (서해안 패류양식장 인근 육상오염원에서 분리한 장구균의 Vancomycin 내성 유전자 검출 및 항생제 내성 특성)

  • Jeong, Yeon Gyeom;Park, Bo Mi;Hwang, Jin Ik;Kim, Min Ju;Oh, Eun Gyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.505-513
    • /
    • 2022
  • In this study, 143 strains of Enterococcus spp. were isolated from inland pollution sources near shellfish farms on the west coast of South Korea. Not all isolated Enterococcus spp. strains possessed vancomycin resistance genes (VanA and VanB). However, since vancomycin-resistance Enterococcus (VRE) have been detected not only in the clinical field but also out in the world, it is possible that the VRE gene may be transferred to other bacterial strains commonly found in coastal waters where seafood is produced. It is important to monitor trends in the appearance of VRE. In addition, antimicrobial resistance patterns of isolates were examined in this study. Overall antimicrobial resistance rates were high: ciprofloxacin (32.2% of isolates resistant), chloramphenicol (30.8%), quinupristin/dalfopristin (19.6%), and tylosin (15.4%). Eight E. faecium strains (6.2%), out of the 129 strains assessed, showed multidrug resistance. All multidrug-resistant E. faecium showed resistance to erythromycin, quinupristin/dalfopristin, tetracycline, and tylosin, in all 14 strains. All multidrug-resistant E. faecalis showed resistance to erythromycin, quinupristin/dalfopristin, tetracycline, and tylosin. Both multidrug-resistant E. faecium and multidrug-resistant E. faecalis showed common resistance to erythromycin, quinupristin/dalfopristin, tetracycline, and tylosin.

Multidrug resistance of coagulase-negative staphylococci isolated from rescued wild animals

  • Rhim, Haerin;Kim, Hong-Cheul;Na, Ki-Jeong;Han, Jae-Ik
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.4
    • /
    • pp.251-255
    • /
    • 2019
  • Wildlife is a bio-indicator of environmental pollution by antimicrobial resistant bacteria or genes, however, there is no information on antimicrobial resistance in wildlife-origin bacteria. This study aimed to investigate the normal microbiota of staphylococci and their antimicrobial resistance in wildlife that did not take any antimicrobials. After sampling and bacterial isolation/identification, antimicrobial resistance profiles were examined by broth microdilution test, Kirby-Bauer disc diffusion test and mecA genetargeted PCR. Of 90 isolates from wildlife, 83 were coagulase-negative staphylococci while only 7 were coagulase-positive staphylococci. Methicillin-resistance was found in 63 (70%) isolates and 35 of 90 (38.9%) isolates were multidrug-resistant staphylococci. When considering that all of the animals did not take any medication or contacted any medical device before the sampling, the results indicate significantly high prevalence of antimicrobial resistance in wild environments. Further study would be necessary to investigate the transmission route of antimicrobial resistance.

Prevalence and Molecular Characterization of ESBL Producing Enterobacteriaceae from Highly Polluted Stretch of River Yamuna, India

  • Siddiqui, Kehkashan;Mondal, Aftab Hossain;Siddiqui, Mohammad Tahir;Azam, Mudsser;Haq., Qazi Mohd. Rizwanul
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.135-144
    • /
    • 2018
  • The rapid increase in number and diversity of Extended Spectrum ${\beta}$-Lactamases (ESBLs) producing Enterobacteriaceae in natural aquatic environment is a major health concern worldwide. This study investigates abundance and distribution of ESBL producing multidrug resistant Enterobacteriaceae and molecular characterization of ESBL genes among isolates from highly polluted stretch of river Yamuna, India. Water samples were collected from ten different sites distributed across Delhi stretch of river Yamuna, during 2014-15. A total of 506 non duplicate Enterobacteriaceae isolates were obtained. Phenotypic detection of ESBL production and antibiotic sensitivity for 15 different antibiotics were performed according to CLSI guidelines (Clinical and Laboratory Standard Institute, 2015). A subset of ESBL positive Enterobacteriaceae isolates were identified by 16S rRNA gene and screened for ESBL genes, such as $bla_{CTX-M}$, $bla_{TEM}$ and $bla_{OXA}$. Out of 506 non-duplicate bacterial isolates obtained, 175 (34.58%) were positive for ESBL production. Susceptibility pattern for fifteen antibiotics used in this study revealed higher resistance to cefazolin, rifampicin and ampicillin. A high proportion (76.57%) of ESBL positive isolates showed multidrug resistance phenotype, with MAR index of 0.39 at Buddha Vihar and Old Delhi Railway bridge sampling site. Identification and PCR based characterization of ESBL genes revealed the prevalence of $bla_{CTX-M}$ and $bla_{TEM}$ genes to be 88.33% and 61.66%, respectively. Co-occurrence of $bla_{CTX-M}$ and $bla_{TEM}$ genes was detected in 58.33% of the resistant bacteria. The $bla_{OXA}$ gene was not detected in any isolates. This study highlights deteriorating condition of urban aquatic environment due to rising level of ESBL producing Enterobacteriaceae with multidrug resistance phenotype.

Prevalence and antimicrobial susceptibility of Streptococcus species isolated from bovine mastitis (젖소 유방염에서 분리한 Streptococcus 종의 분포 및 항생제 내성 분석)

  • Kang, Hye Jeong;Hong, Serim;Park, Dasom;Kim, Ha-Young;Moon, Jin-San
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.3
    • /
    • pp.181-189
    • /
    • 2022
  • Streptococcus is one of the major pathogen groups inducing bovine mastitis. The aim of this study was to investigate the antimicrobial resistance patterns of Streptococcus species isolated from bovine mastitis milk samples in Korea from 2016 to 2021. In total, 181 (10.3%) Streptococcal isolates were collected from 1,761 quarter milk samples at 122 farms; S. uberis 39.2% (n=71), S. dysgalactiae 29.3% (n=53), S. equinus 9.9% (n=18), S. suis 6.1% (n=11), S. parauberis 4.4% (n=8), S. lutetiensis 3.9% (n=7), others 7.2% (n=13). However, S. agalactiae was not isolated. The isolates showed the highest resistance rate to tetracycline (55.2%) followed by erythromycin (45.3%) and pirlimycin (36.5%). In contrast, all isolates were susceptible to ceftiofur, cephalothin, penicillin/novobiocin, and only single S. equinus isolate was resistant to both ampicillin and penicillin. Of 181 isolates, 64 (35.4%) were multidrug resistance (MDR). The resistance to pirlimycin of S. uberis (73.2%) was much higher than that of other species (0~36.4%). All S. suis isolates were resistance to tetracycline. S. dysgalactiae showed lower resistance to erythromycin, pirlimycin and tetracycline than S. uberis and S. suis. The rate of MDR was relatively higher among S. uberis (73.2%) than among S. suis (36.4%), S. dysgalactiae (15.1%), others (0%). In conclusion, antimicrobial resistance in Streptococcus spp. should be regularly examined for appropriate therapies because the resistance patterns were various among the individual species.

A monitoring survey on antimicrobial resistance of bacterial isolates from companion dogs in Incheon (인천지역 반려견 유래 세균의 항생제 내성 모니터링 조사)

  • Kim, Kyung-Mi;Cho, Min-Haneng;Lee, Seung-Hwan;Kim, Kyung-Ho;Lee, Jung-Gu;Lee, Sung-Mo
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.53-60
    • /
    • 2019
  • This study was performed to investigate antimicrobial resistance in bacterial isolates obtained from companion dogs in veterinary hospitals and an animal shelter in Incheon. Drug resistance was examined respectively with the isolates of Escherichia coli, Enterococcus faecalis, and Staphylococcus pseudintermedius. The prevalence of drug resistance was calculated for each bacterial species towards 163 E. coli isolates, 156 E. faecalis isolates, and 86 S. pseudintermedius isolates by using selected antimicrobials. E. coli isolates were highly resistant to ampicillin, ciprofloxacin and tetracycline (47.9%, 28.2% and 28.2%, respectively). E. faecalis isolates were highly resistant to quinupristin-dalfopristin, tetracycline, kanamycin, rifampicin (69.8%, 66.0%, 53.8% and 51.9%, respectively). Higher levels of resistance were detected for ampicillin, penicillin, tetracycline, erythromycin, trimethoprim/sulfamethoxazole, telithromycin in S. pseudintermedius isolates (83.7%~52.6%, respectively). Occurrence of methicillin-resistant S. pseudintermedius (MRSP) was confirmed by oxacillin disc diffusion method, resulted in 23.3% occurrence among the S. pseudintermedius isolates (20/86 strains). The occurrence ratio of multidrug-resistance in the isolates of E. coli, E. faecalis, and S. pseudintermedius was 34.5%, 56.9%, and 67.9%, respectively. In this study, higher levels of antimicrobial drug resistance were observed in bacterial isolates obtained from dogs in Incheon. A regular monitoring and surveillance program should be implemented to prevent the emergence and spread of the drug-resistant bacteria carried in companion dogs.

Virulence gene profiles and antimicrobial susceptibility of Salmonella Brancaster from chicken

  • Evie Khoo ;Roseliza Roslee ;Zunita Zakaria;Nur Indah Ahmad
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.82.1-82.12
    • /
    • 2023
  • Background: The current conventional serotyping based on antigen-antisera agglutination could not provide a better understanding of the potential pathogenicity of Salmonella enterica subsp. enterica serovar Brancaster. Surveillance data from Malaysian poultry farms indicated an increase in its presence over the years. Objective: This study aims to investigate the virulence determinants and antimicrobial resistance in S. Brancaster isolated from chickens in Malaysia. Methods: One hundred strains of archived S. Brancaster isolated from chicken cloacal swabs and raw chicken meat from 2017 to 2022 were studied. Two sets of multiplex polymerase chain reaction (PCR) were conducted to identify eight virulence genes associated with pathogenicity in Salmonella (invasion protein gene [invA], Salmonella invasion protein gene [sipB], Salmonella-induced filament gene [sifA], cytolethal-distending toxin B gene [cdtB], Salmonella iron transporter gene [sitC], Salmonella pathogenicity islands gene [spiA], Salmonella plasmid virulence gene [spvB], and inositol phosphate phosphatase gene [sopB]). Antimicrobial susceptibility assessment was conducted by disc diffusion method on nine selected antibiotics for the S. Brancaster isolates. S. Brancaster, with the phenotypic ACSSuT-resistance pattern (ampicillin, chloramphenicol, streptomycin, sulphonamides, and tetracycline), was subjected to PCR to detect the corresponding resistance gene(s). Results: Virulence genes detected in S. Brancaster in this study were invA, sitC, spiA, sipB, sopB, sifA, cdtB, and spvB. A total of 36 antibiogram patterns of S. Brancaster with a high level of multidrug resistance were observed, with ampicillin exhibiting the highest resistance. Over a third of the isolates displayed ACSSuT-resistance, and seven resistance genes (β-lactamase temoneira [blaTEM], florfenicol/chloramphenicol resistance gene [floR], streptomycin resistance gene [strA], aminoglycoside nucleotidyltransferase gene [ant(3")-Ia], sulfonamides resistance gene [sul-1, sul-2], and tetracycline resistance gene [tetA]) were detected. Conclusion: Multidrug-resistant S. Brancaster from chickens harbored an array of virulence-associated genes similar to other clinically significant and invasive non-typhoidal Salmonella serovars, placing it as another significant foodborne zoonosis.

Prevalence and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus from Nasal Specimens: Overcoming MRSA with Silver Nanoparticles and Their Applications

  • Aly E. Abo-Amer;Sanaa M. F. Gad El-Rab;Eman M. Halawani;Ameen M. Niaz;Mohammed S. Bamaga
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1537-1546
    • /
    • 2022
  • Staphylococcus aureus is a cause of high mortality in humans and therefore it is necessary to prevent its transmission and reduce infections. Our goals in this research were to investigate the frequency of methicillin-resistant S. aureus (MRSA) in Taif, Saudi Arabia, and assess the relationship between the phenotypic antimicrobial sensitivity patterns and the genes responsible for resistance. In addition, we examined the antimicrobial efficiency and application of silver nanoparticles (AgNPs) against MRSA isolates. Seventy-two nasal swabs were taken from patients; MRSA was cultivated on Mannitol Salt Agar supplemented with methicillin, and 16S rRNA sequencing was conducted in addition to morphological and biochemical identification. Specific resistance genes such as ermAC, aacA-aphD, tetKM, vatABC and mecA were PCR-amplified and resistance plasmids were also investigated. The MRSA incidence was ~49 % among the 72 S. aureus isolates and all MRSA strains were resistant to oxacillin, penicillin, and cefoxitin. However, vancomycin, linezolid, teicoplanin, mupirocin, and rifampicin were effective against 100% of MRSA strains. About 61% of MRSA strains exhibited multidrug resistance and were resistant to 3-12 antimicrobial medications (MDR). Methicillin resistance gene mecA was presented in all MDR-MRSA strains. Most MDR-MRSA contained a plasmid of > 10 kb. To overcome bacterial resistance, AgNPs were applied and displayed high antimicrobial activity and synergistic effect with penicillin. Our findings may help establish programs to control bacterial spread in communities as AgNPs appeared to exert a synergistic effect with penicillin to control bacterial resistance.

Comparison of Antimicrobial Resistance Characteristics of Bacteria Isolated from Cultured Shellfish on the West Coast of Korea (서해안 양식패류에서 분리한 세균의 항생제 내성 특성 비교)

  • Park, Bo Mi;Jeong, Yeon Gyeom;Hwang, Jin Ik;Kim, Min Ju;Oh, Eun Gyoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.5
    • /
    • pp.495-504
    • /
    • 2022
  • This study examined the antimicrobials properties of bacteria using the minimum inhibitory concentration method. The bacteria were isolated from 30 shellfish (oysters and short neck clams) collected from Jawol-myeon, Ongjin-gun, Incheon and Iwon-myeon, Taean-gun, Chungcheongnam-do, on the west coast of Korea. A total of 528 bacteria were isolated from June to October 2020 and were classified into land-originating (LB; 264 strains) and marine-originating (MB; 264 strains) bacterial groups. Of the LB strains, 10 genera were identified, of which nine were Enterobacteriaceae. All MB strains were identified as species of the genus Vibrio spp.. Antimicrobial resistance to one or more agents was observed in 77.3% of the LB strains, and 90-100% of them were resistant to ampicillin Escherichia spp. were not resistant to ampicillin. The overall multidrug resistance rate of the LB strains was 49.2%, with 85 resistance patterns. Antimicrobial resistance to one or more agents was observed in 98.1% of the MB strains, because most of the V. alginolyticus and V. parahaemolyticus strains were resistant to ampicillin. The overall multidrug resistance rate of the MB strains was 1.9% with 19 resistance patterns.

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar;Sharma, Poonam;Singh, Rambir
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.