• 제목/요약/키워드: bacterial metabolites

검색결과 158건 처리시간 0.026초

Antimutagenic Effect of Bacillus natto Isolated from Natto

  • Yun, Soon-Il
    • Journal of Applied Biological Chemistry
    • /
    • 제48권3호
    • /
    • pp.133-137
    • /
    • 2005
  • In vitro antimutagenicity of Bacillus natto islolated from Natto, Japanese traditional fermented food, was investigated using umu-test. Mutagenicity of S9-activated metabolites of Trp-P-2 and IQ for Salmonella typhimurium TA 1535/pSK1002 was remarkably inhibited by addition of bacterial cells and their cytoplasmic fraction. Desmutagenicity by cytoplasmic fraction increased with increasing concentration of the fraction. Bioantimutagenic effect of cytoplasm on Salmonella typhimurium SD-100 did not show bioantimutagenic activity against mutated bacterial cells induced by Trp-P-2. Cytoplasmic fraction exhibited 17% bioantimutagenicity due to desmutation caused by IQ.

Overexpression of Shinorhizobium meliloti Hemoprotein in Streptomyces lividans to Enhance Secondary Metabolite Production

  • Kim, Yoon-Jung;Sa, Soon-Ok;Chang, Yong-Keun;Hong, Soon-Kwang;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.2066-2070
    • /
    • 2007
  • It was found that Shinorhizobium meliloti hemoprotein (SM) was more effective than Vitreoscilla hemoglobin (Vhb) in promoting secondary metabolites production when overexpressed in Streptomyces lividans TK24. The transformant with sm (sm-transformant) produced 2.7-times and 3-times larger amounts of actinorhodin than the vhb-transformant in solid culture and flask culture, respectively. In both solid and flask cultures, a larger amount of undecylprodigiocin was produced by the sm-transformant. It is considered that the overexpression of SM especially has activated the pentose phosphate pathway through oxidative stress, as evidenced by an increased NADPH production observed, and that it has promoted secondary metabolites biosynthesis.

The Inhibitory Effect of Gut Microbiota and Its Metabolites on Colorectal Cancer

  • Chen, Chao;Li, Huajun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1607-1613
    • /
    • 2020
  • Colorectal cancer (CRC) is regarded as one of the most common and deadly forms of cancer. Gut microbiota is vital to retain and promote several functions of intestinal. Although previous researches have shown that some gut microbiota have the abilities to inhibit tumorigenesis and prevent cancer from progressing, they have not yet clearly identified associative mechanisms. This review not only concentrates on the antitumor effects of metabolites produced by gut microbiota, for example, SCFA, ferrichrome, urolithins, equol and conjugated linoleic acids, but also the molecules which constituted the bacterial cell wall have the antitumor effect in the host, including lipopolysaccharide, lipoteichoic acid, β-glucans and peptidoglycan. The aim of our review is to develop a possible therapeutic method, which use the products of gut microbiota metabolism or gut microbiota constituents to help treat or prevent colorectal cancer.

A New Intermediate in the Degradation of Carbofuran by Sphingomonas sp. Strain SB5

  • Park Myung-Ryeol;Lee Sun-Woo;Han Tae-Ho;Oh Byung-Tack;Shim Jae-Han;Kim In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1306-1310
    • /
    • 2006
  • Sphingomonas sp. strain SB5 could degrade carbofuran and carbofuran-7-phenol to a hydrolytic product, 2-hydroxy-3-(3-methlypropan-2-o1)phenol, and several red metabolites. However, the chemical structures of the red metabolites have largely remained unidentified. In this study, we identified the structure of one of the red metabolites as 5-(2-hydroxy-2-methyl-propyl)-2,2-dimethyl- 2,3-dihydro-naphtho[2,3-6]furan-4,6,7,9-tetrone by using mass spectrometric and NMR ($^1$H, $^{13}$C) analyses. It is suggested that the red metabolite resulted from condensation of some metabolites in the degradation of 2-hydroxy-3-(3-methlypropan-2-o1)phenol, a hydrolytic product derived from carbofuran. To our knowledge, this is the first paper to report a red metabolite in bacterial degradation of the insecticide carbofuran.

Metabolism and drug interactions of Korean ginseng based on the pharmacokinetic properties of ginsenosides: Current status and future perspectives

  • Jong Dae Park
    • Journal of Ginseng Research
    • /
    • 제48권3호
    • /
    • pp.253-265
    • /
    • 2024
  • Orally administered ginsenosides, the major active components of ginseng, have been shown to be biotransformed into a number of metabolites by gastric juice, digestive and bacterial enzymes in the gastrointestinal tract and also in the liver. Attention is brought to pharmacokinetic studies of ginseng that need further clarification to better understand the safety and possible active mechanism for clinical application. Experimental results demonstrated that ginsenoside metabolites play an important role in the pharmacokinetic properties such as drug metabolizing enzymes and drug transporters, thereby can be applied as a metabolic modulator. Very few are known on the possibility of the consistency of detected ginsenosides with real active metabolites if taken the recommended dose of ginseng, but they have been found to act on the pharmacokinetic key factors in any clinical trial, affecting oral bioavailability. Since ginseng is increasingly being taken in a manner more often associated with prescription medicines, ginseng and drug interactions have been also reviewed. Considering the extensive oral administration of ginseng, the aim of this review is to provide a comprehensive overview and perspectives of recent studies on the pharmacokinetic properties of ginsenosides such as deglycosylation, absorption, metabolizing enzymes and transporters, together with ginsenoside and drug interactions.

항변이원성 물질을 생성하는 미생물의 분리방법 (Isolation of a Desmutagenic Substance Producing Microorganisms)

  • 박용일;조문구;정호권
    • 한국미생물·생명공학회지
    • /
    • 제20권1호
    • /
    • pp.110-113
    • /
    • 1992
  • In the screening process of anti- or desmutagenic substance from the various microbial metabolites with the method of Ames and Rec-assay, a desmutagenic substance producing bacterial strain which inactivates the mitomycin C-induced mutagenicity was isolated and identified as Psudomonas sp. AM-10.

  • PDF

Comparison of metabolites in rumen fluid, urine, and feces of dairy cow from subacute ruminal acidosis model measured by proton nuclear magnetic resonance spectroscopy

  • Hyun Sang, Kim;Shin Ja, Lee;Jun Sik, Eom;Youyoung, Choi;Seong Uk, Jo;Jaemin, Kim;Sang Suk, Lee;Eun Tae, Kim;Sung Sill, Lee
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.53-62
    • /
    • 2023
  • Objective: In this study, metabolites that changed in the rumen fluid, urine and feces of dairy cows fed different feed ratios were investigated. Methods: Eight Holstein cows were used in this study. Rumen fluid, urine, and feces were collected from the normal concentrate diet (NCD) (Italian ryegrass 80%: concentrate 20% in the total feed) and high concentrate diet (HCD) groups (20%: 80%) of dairy cows. Metabolite analysis was performed using proton nuclear magnetic resonance (NMR) identification, and statistical analysis was performed using Chenomx NMR software 8.4 and Metaboanalyst 4.0. Results: The two groups of rumen fluid and urine samples were separated, and samples from the same group were aggregated together. On the other hand, the feces samples were not separated and showed similar tendencies between the two groups. In total, 160, 177, and 188 metabolites were identified in the rumen fluid, urine, and feces, respectively. The differential metabolites with low and high concentrations were 15 and 49, 14 and 16, and 2 and 2 in the rumen fluid, urine, and feces samples, in the NCD group. Conclusion: As HCD is related to rumen microbial changes, research on different metabolites such as glucuronate, acetylsalicylate, histidine, and O-Acetylcarnitine, which are related to bacterial degradation and metabolism, will need to be carried out in future studies along with microbial analysis. In urine, the identified metabolites, such as gallate, syringate, and vanillate can provide insight into microbial, metabolic, and feed parameters that cause changes depending on the feed rate. Additionally, it is thought that they can be used as potential biomarkers for further research on subacute ruminal acidosis.

Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae

  • Choi, Jung Nam;Kim, Jiyoung;Ponnusamy, Kannan;Lim, Chaesung;Kim, Jeong Gu;Muthaiya, Maria John;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.177-183
    • /
    • 2013
  • Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between timedependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.

Nano-Encapsulation of Plant Growth-Promoting Rhizobacteria and Their Metabolites Using Alginate-Silica Nanoparticles and Carbon Nanotube Improves UCB1 Pistachio Micropropagation

  • Pour, Mojde Moradi;Saberi-Riseh, Roohallah;Mohammadinejad, Reza;Hosseini, Ahmad
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1096-1103
    • /
    • 2019
  • UCB-1 is the commercial rootstock of pistachio. Reproduction of this rootstock by tissue culture is limited by low levels of proliferation rate. Therefore, any compound that improves the proliferation rate and the quality of the shoots can be used in the process of commercial reproduction of this rootstock. Use of plant growth-promoting bacteria is one of the best ideas. Given the beneficial effects of nanoparticles in enhancement of the growth in plant tissue cultures, the aim of the present study was to investigate the effects of nanoencapsulation of plant growth-promoting rhizobacteria (using silica nanoparticles and carbon nanotubes) and their metabolites in improving UCB1 pistachio micropropagation. The experiment was conducted in a completely randomized design with three replications. Before planting, treatments on the DKW medium were added. The results showed that the use of Pseudomonas fluorescens VUPF5 and Bacillus subtilis VRU1 nanocapsules significantly enhanced the root length and proliferation. The nanoformulation of the VUPF5 metabolite led to the highest root length (6.26 cm) and the largest shoot (3.34 cm). Inoculation of explants with the formulation of the metabolites (both bacterial strains) significantly elevated the average shoot length and the fresh weight of plant compared to the control. The explants were dried completely using both bacterial strains directly and with capsule coating after the three days.

Overproduction of Lactic Bacterial Enzymes and Bioactive Components

  • Lee, Byong-H.
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과학회 2002년도 제54회 춘계심포지움 - 우유와 국민건강
    • /
    • pp.45-55
    • /
    • 2002
  • Recent developments in the application of molecular biology to food grade lactic acid bacteria (LAB) have shown that it could be feasible to engineer metabolic pathways to either enhance specific metabolic fluxes or to divert metabolites for the production of different or new end products. This engineering requires detailed knowledge of enzymes involved in metabolism and regulation within the targeted organism but little works have been done in this area. During biochemical and molecular characterisation of lactic bacterial enzymes, some of probiotic Lactobacillus and Bifidobacterium species were found to be very useful for food, nutraceutical and pharmaceutical industries. The enzymes are usually intracellular and the yields are very low to be useful for industrial applications. Among many enzymes and proteins of lactic bacteria studied, some of our gene cloning achievements have contributed to overproduction of lactic bacterial enzymes such as peptidases, esterases, lactases, bile salt hydrolases and linoleate isomerases for foods and nutraceuticals.

  • PDF