• Title/Summary/Keyword: bacterial inhibition

Search Result 650, Processing Time 0.032 seconds

Inhibition of Food-derived Lactic Acid Bacterial Biofilm Formation Using Eisenia bicyclis-derived Nanoparticles (식품 유래 Biofilm 형성 유산균에 대한 대황(Eisenia bicyclis) 유래 Nanoparticle의 Biofilm 형성 저해)

  • Do Kyung Oh;Fazlurrahman Khan;Seul-Ki Park;Du-Min Jo;Kyung-Jin Cho;Geum-Jae Jeong;Yeon-Ju Sim;Jeong Mi Choi;Jae-Ho Woon;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.129-136
    • /
    • 2024
  • Lactic acid bacteria (LAB) growth in processed meat products produces slime. In this study, 10 different biofilm-forming LAB, including Leuconostoc mesenteroides, Lacticaseibacillus paracasei, Levilactobacillus brevis, Lactiplantibacillus plantarum, Leuconostoc citreum, Weissella viridescens, and Latilactobacillus sakei, were isolated from various meat products and identified based on 16S rRNA gene analysis. To inhibit biofilm formation by LABs, Eisenia bicycles methanolic extract (EB) and ethyl acetate soluble fraction (EA) were used as antibacterial and antibiofilm agents, respectively. Furthermore, EA and EB were employed to synthesize gold nanoparticles (AuNPs) such as EB-AuNPs and EA-AuNPs, which could serve as antibiofilm agents against the isolated LAB. These findings demonstrate that EA, EB-AuNPs, and EA-AuNPs exhibit significant antibacterial activity against the isolated LAB. Furthermore, EB-AuNPs reduced L. citreum biofilm production, whereas EA-AuNPs inhibited L. mesenteroides and L. brevis biofilm formation. The current results suggest that EB-AuNPs and EA-AuNPs can be used as nanomaterials to inhibit LAB that form biofilms on meat products.

Inhibition of Verticillium Wilt in Cotton through the Application of Pseudomonas aeruginosa ZL6 Derived from Fermentation Residue of Kitchen Waste

  • Qiuhong Niu;Shengwei Lei;Guo Zhang;Guohan Wu;Zhuo Tian;Keyan Chen;Lin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1040-1050
    • /
    • 2024
  • To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42℃), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ߡNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMߡNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.

Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness

  • Ji Chul Nam;Padam Shekhar Bhatt;April Bonnard;Dinesh Pujara;Hong-Gu Kang
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.438-450
    • /
    • 2024
  • Arabidopsis MORC1 (Microrchidia) is required for multiple levels of immunity. We identified 14 MORC1-interacting proteins (MIPs) via yeast two-hybrid screening, eight of which have confirmed or putative nuclear-associated functions. While a few MIP mutants displayed altered bacterial resistance, MIP13 was unusual. The MIP13 mutant was susceptible to Pseudomonas syringae, but when combined with morc1/2, it regained wild-type resistance; notably, morc1/2 is susceptible to the same pathogen. MIP13 encodes MED9, a mediator complex component that interfaces with RNA polymerase II and transcription factors. Expression analysis of defense genes PR1, PR2, and PR5 in response to avirulent P. syringae revealed that morc1/2 med9 expressed these genes in a slow but sustained manner, unlike its lower-order mutants. This expression pattern may explain the restored resistance and suggests that the interplay of MORC1/2 and MED9 might be important in curbing defense responses to maintain fitness. Indeed, repeated challenges with avirulent P. syringae triggered significant growth inhibition in morc1/2 med9, indicating that MED9 and MORC1 may play an important role in balancing defense and growth. Furthermore, the in planta interaction of MED9 and MORC1 occurred 24 h, not 6 h, post-infection, suggesting that the interaction functions late in the defense signaling. Our study reveals a complex interplay between MORC1 and MED9 in maintaining an optimal balance between defense and growth in Arabidopsis.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

Effect of Asarum sieboldii Extracts on the Growth, Acid Production, Adhesion, and Insoluble Glucan Synthesis of Streptococcus mutans (세신 추출물의 Streptococcus mutans에 대한 성장, 산생성, 부착 및 비수용성 글루칸 합성억제에 미치는 영향)

  • Yu Hyeon Hee;Seo Se Jeong;Kim Yeon Hwa;Lee Heung Soo;Kim Kang Ju;Jeon Byung Hun;You Yong Ouk
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.666-671
    • /
    • 2003
  • Dental caries are the most commonly occurring chronic diseases in the dental field. Because of increasing sugar consumption and extension of average human life, these diseases are widely found all over the world as the most typical cause for a person to lose a tooth. Therefore, the development of more effective, substantial and safe preventive agents against dental caries is strongly required. Streptococcus mutans is known as the causative bacterial playing the most important role informing plaque and it is being noticed as major causative bacteria of dental caries. The present study was designed to investigate the effect of Asarum sieboldii Miquel(Aristolochiaceae) extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans(S. mutans). Both methanol and aqueous extracts showed concentration dependent inhibitory activity against the growth and acid production of S. mutans, and produced significant inhibition at the concentration of 100, 1,000 and 2,000 μg/ml compared to the control group(p<0.05 - p<0.01). The extracts markedly inhibited S. mutans adherence to HA treated with saliva, and cell adherence was repressed by more than 50% at the concentration of 10 μg/ml and complete inhibition was observed at the concentration of 2,000 μg/ml. On the activity of glucosyltransferase which synthesizes water insoluble glucan from sucrose, methanol and aqueous extracts showed more than 70% inhibition over the concentration of 1,000 μg/ml. Hence, we conclude that Asarum sieboldii might be a candidate of anticaries agent.

Effect of Various LED Light Wavelengths on the Growth of Food-borne Bacteria (다양한 파장의 LED 조사가 주요 식중독 미생물의 생장에 미치는 영향)

  • Lee, Ji-Eun;Xu, Xiaotong;Jeong, So-Mi;Kim, Su-Ryong;Kim, Han-Ho;Kang, Woo-Sin;Ryu, Si-Hyeong;Lee, Ga-Hye;Ahn, Dong-Hyun
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.905-912
    • /
    • 2021
  • In this study, four common food-borne bacteria, namely, Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Bacillus subtilis, were targeted via irradiation with 270 nm UV C-LED, 365 nm UV A-LED, 465~475 and 620~630 nm visible-LED, and 850 and 5,000~7,000 nm infrared-LED light. The effect on the growth of each bacterial species was investigated. In the case of 270 nm UV C-LED, all four strains showed inhibitory effects compared with the control group when irradiated for 10 or 30 min. Furthermore, when irradiated with 365 nm UV A-LED for 1 or 3 hr, B. subtilis showed 100% growth inhibition. When irradiated with 465~475 nm visible-LED for 1 hr, all four strains showed no significant difference from the control group but showed significant growth inhibition when irradiated for 3 hr. S. aureus and B. subtilis treated with 620~630 nm visible-LED; S. typhimurium and S. aureus treated with 850 nm infrared-LED; and E. coli, S. typhimurium, and S. aureus treated with 5,000~7,000 nm infrared-LED were confirmed to significantly proliferate compared with the control group. The results of this experiment show the potential of the use of various LED light sources as a food preservation and application technology by examining their effect on the inhibition and growth of food-borne bacteria and by grasping the characteristics of each wavelength.

Studies on Microbial and Enzymatic Actions during the Ripening Process of Salted Alaska Pollack Tripe (창난 젓갈의 숙성 과정 중 미생물 및 자기소화효소 작용에 관한 연구)

  • Chae, Soo-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.3
    • /
    • pp.340-349
    • /
    • 2011
  • This study examined the roles of autolytic enzymes and microorganisms in the ripening process of salted Alaska pollack tripe made with various concentrations of salt i.e, 7.5% and 20% by weight. Salted Alaska pollack tripe treated with antibiotic agents for the inhibition of microbial growth and a control were prepared experimentally, and changes in chemical composition and viable cell counts were investigated, individually, during the ripening process. Just after the preparation of the low salt Alaska pollack tripe made with 7.5% salt, viable bacterial cells occurred at a level of $10^5$ CFU/g. In the control, bacterial counts increased rapidly to $10^7$ CFU/g by the 14th day of ripening. However, in the sample treated with antibiotic agents, counts were decreased to a level of $10^4$ CFU/g by the 3rd day of ripening and increased gradually to $10^6$ CFU/g by the 5th day of ripening, and then the same value was maintained there-after. Just after the preparation of the high salt Alaska pollack tripe made with 20% salt, viable bacterial cells occurred at a level of $10^3$ CFU/g. In both the samples treated with antibiotic agents and the control, bacterial counts decreased rapidly to $10^0$ CFU/g by the 45th day of ripening and increased gradually there-after. The content of amino type nitrogen was 76.3 mg% just after the preparation of the low salt Alaska pollack tripe made with 7.5% salt. Amino type nitrogen content was increased to 283.5 mg% by the 5th day of proper ripening in the control, but it was increased to 208.0 mg% in the sample treated with antibiotic agents. The difference in amino type nitrogen content was 75.5 mg/100 g. The content of amino type nitrogen was 57.2 mg% just after the preparation of the high salt Alaska pollack tripe made with 20% salt. Amino type nitrogen content was increased to 198.3 mg by the 60th day of proper ripening in the control, but it was increased to 162.0 mg% in the sample treated with the antibiotic agents. The difference in amino type nitrogen content was 36.3 mg/100 g. The contents of VBN and TMA-N were 102.1 mg% and 20.5 mg%, respectively, at the 7th day of ripening in the low salt Alaska pollack tripe made with 7.5% salt. The content of VBN was 60.0 mg% and TMA-N was not detected at the 21st day of ripening in the sample treated with antibiotic agents. The control sample was spoiled by the 7th day of ripening but the sample treated with antibiotic agents was not spoiled by the 21st day of ripening. On the other hand, VBN content was 37.2 mg% and TMA-N was not detected at the 90th day of ripening in the high salt Alaska pollack tripe made with 20% salt, and the control sample was not spoiled.

Isolation and In Vitro Antimicrobial Activity of Low Molecular Phenolic Compounds from Burkholderia sp. MP-1 (Brukholderia sp. MP-1 에서의 페놀화합물의 분리와 항균활성의 측정)

  • Mao, Sopheareth;Jin, Rong-De;Lee, Seung-Je;Kim, Yong-Woong;Kim, In-Seon;Shim, Jae-Han;Park, Ro-Dong;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.195-203
    • /
    • 2006
  • An antagonistic strain, Burkholderia MP-1, showed antimicrobial activity against various filamentous plant pathogenic fungi, yeasts and food borne bacteria (Gram-positive and Gram-negative). The nucleotide sequence of the 16S rRNA gene (1491 pb) of strain MP-1 exhibited close similarity (99-100%) with other Burkholderia 16S rRNA genes. Isolation of the antibiotic substances from culture broth was fractionated by ethyl acetate (EtOAc) solvent and EtOAc-soluble acidic fraction. The antibiotic substances were purified through a silica gel, Sephadex LH-20, ODS column chromatography, and high performance liquid chromatography, respectively. Four active substances were identified as phenylacetic acid, hydrocinnamic acid, 4-hydroxyphenylacetic acid and 4-hydroxyphenylacetate methyl ester by gas chromatographic-mass spectrum analysis. The minimum inhibition of concentration (MIC) of each active compound inhibited the growth of the microorganisms tested at 250 to $2500{\mu}g\;ml^{-1}$. The antimicrobial activity of crude acidic fraction at 1 mg of dry weight per 6 mm paper disc was more effective than authentic standard mixture (four active substances were mixed with the same ratio as acidic fraction) over a wide range of bacterial test.

Aggregatibacter actinomycetemcomitans Strongly Stimulates Endothelial Cells to Produce Monocyte Chemoattractant Protein-1 and Interleukin-8

  • Choi, Eun-Kyoung;Kang, Mi-Sun;Oh, Byung-Ho;Kim, Sang-Yong;Kim, So-Hee;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.137-145
    • /
    • 2012
  • Aggregatibacter actinomycetemcomitans is the most important etiologic agent of aggressive periodontitis and can interact with endothelial cells. Monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) are chemokines, playing important roles in periodontal pathogenesis. In our current study, the effects of A. actinomycetemcomitans on the production of MCP-1 and IL-8 by human umbilical vein endothelial cells (HUVEC) were investigated. A. actinomycetemcomitans strongly induced the gene expression and protein release of both MCP-1 and IL-8 in a dose- and time-dependent manner. Dead A. actinomycetemcomitans cells were as effective as live bacteria in this induction. Treatment of HUVEC with cytochalasin D, an inhibitor of endocytosis, did not affect the mRNA up-regulation of MCP-1 and IL-8 by A. actinomycetemcomitans. However, genistein, an inhibitor of protein tyrosine kinases, substantially inhibited the MCP-1 and IL-8 production by A. actinomycetemcomitans, whereas pharmacological inhibition of each of three members of mitogen-activated protein (MAP) kinase family had little effect. Furthermore, gel shift assays showed that A. actinomycetemcomitans induces a biphasic activation (early at 1-2 h and late at 8-16 h) of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and an early brief activation (0.5-2 h) of activator protein-1 (AP-1). Activation of canonical NF-${\kappa}B$ pathway ($I{\kappa}B$ kinase activation and $I{\kappa}B-{\alpha}$ degradation) was also demonstrated in these experiments. Although lipopolysaccharide from A. actinomycetemcomitans also induced NF-${\kappa}B$ activation, this activation profile over time differed from that of live A. actinomycetemcomitans. These results suggest that the expression of MCP-1 and IL-8 is potently increased by A. actinomycetemcomitans in endothelial cells, and that the viability of A. actinomycetemcomitans and bacterial internalization are not required for this effect, whereas the activation of protein tyrosine kinase(s), NF-${\kappa}B$, and AP-1 appears to play important roles. The secretion of high levels of MCP-1 and IL-8 resulting from interactions of A. actinomycetemcomitans with endothelial cells may thus contribute to the pathogenesis of aggressive periodontitis.

Characterization of β-agarase from Isolated Simiduia sp. SH-4 (분리된 Simiduia sp. SH-4가 생산하는 β-agarase의 특성조사)

  • Kim, Jae-Deog;Lee, Sol-Ji;Jo, Jeong-Gwon;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.453-459
    • /
    • 2016
  • Agarases are classified into α-agarase and β-agarase that produce agarooligosaccharides and neoagarooligosaccharides, respectively. Neoagarooligosaccharides have whitening effect of skin, delay of starch degradation, and inhibition of bacterial growth etc. Hence, the object of this study was to isolate a novel agarase producing marine bacterium and characterization of its β-agarase. A novel agar-degrading bacterium was isolated from seashore of Namhae at Gyeongnamprovine, Korea and purely cultured with Marine agar 2216 media. The isolated bacterium was identified as Simiduia sp. SH-4 after 16S rRNA gene sequencing. The enzymatic sample was obtained from culture media of Simiduia sp. SH-4. Enzymatic activity was highly increased from 20(30% relative activity) to 30℃ (100%) and decreased from 30 to 40℃(75%) and so more. Relative activity was 100% at pH 6 while those were about 91% and 59% at pH 5.0 and 7.0, respectively, meaning the enzyme possesses narrow optimal pH range. Hence, the enzyme exhibited the maximal activity with 120.4 units/l at pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. Thin layer chromatography (TLC) analysis showed that Simiduia sp. SH-4 produces β-agarase, which hydrolyze agarose to produce biofunctional neoagarooligosaccharides such as neoagarotetraose and neoagarobiose. Hence, broad applications would be possible using Simiduia sp. SH-4 and its enzyme in the food industry, cosmetics and medical fields.