• 제목/요약/키워드: bacterial growth modeling

검색결과 10건 처리시간 0.026초

Development of User-Friendly Modeling Software and Its Application in Processed Meat Products

  • Lee, Heeyoung;Lee, Panho;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan
    • 한국식품위생안전성학회지
    • /
    • 제33권3호
    • /
    • pp.157-161
    • /
    • 2018
  • 본 연구에서는 육제품의 다양한 조건(포장, 저장온도, 염농도, 아질산염농도)에서의 식중독세균의 생장을 예측하는소프트웨어를 예측미생물학에 대한 지식이 부족한 비전문가도 손쉽게 이용할 수 있도록 개발하였다. 육제품에서의 식중독세균예측소프트웨어(FAME: Foodborne bacteria Animal product Modeling Equipment)는 Javascript와 HTML을 이용하여 개발하였으며, 육제품에 대한 카이네틱모델과 확률모델을 포함하고있다. FAME에서는 검증(validation) 기능을 포함하고 있으며, FAME에 탑재 되어있는 예측모델의 수식을 자유롭게 수정할 수 있도록 고안 하였다. FAME에는 포장조건, 온도, 염농도, 아질산염농도 조합에 따라 실험한 데이터를 카이네틱모델(5,400 데이터)과 확률모델(345,600 데이터)에 탑재하였다. 사용자가 FAME을 이용하여 육제품의 제조 조건을 소프트웨어에 입력하면, 시간에 따른 식중독세균의 생장패턴과 생장확률이 즉시 계산 되어진다. 따라서 예측 미생물학에 대한 전문 지식이 없는 비전문가라고 하더라도 FAME을 이용하여 직접 실험을 하지 않고도 육제품에서의 식중독세균의 생장을 쉽고 빠르게 예측할 수 있어, 육가공분야에서 매우 유용하게 사용되어 질 수 있을 것으로 판단된다.

Microbial Quality Change Model of Korean Pan-Fried Meat Patties Exposed to Fluctuating Temperature Conditions

  • Kim, So-Jung;An, Duck-Soon;Lee, Hyuek-Jae;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제13권4호
    • /
    • pp.348-353
    • /
    • 2008
  • Aerobic bacterial growth on Korean pan.fried meat patties as a primary quality deterioration factor was modeled as a function of temperature to estimate microbial spoilage on a real.time basis under dynamic storage conditions. Bacteria counts in the stretch.wrapped foods held at constant temperatures of 0, 5, 10 and $15^{\circ}C$ were measured throughout storage. The bootstrapping method was applied to generate many resampled data sets of mean microbial counts, which were then used to estimate the parameters of the microbial growth model of Baranyi & Roberts in the form of differential equations. The temperature functions of the primary model parameters were set up with confidence limits. Incorporating the temperature dependent parameters into the differential equations of bacterial growth could produce predictions closely representing the experimental data under constant and fluctuating temperature conditions.

Quantitative Polymerase Chain Reaction for Microbial Growth Kinetics of Mixed Culture System

  • Cotto, Ada;Looper, Jessica K.;Mota, Linda C.;Son, Ahjeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1928-1935
    • /
    • 2015
  • Microbial growth kinetics is often used to optimize environmental processes owing to its relation to the breakdown of substrate (contaminants). However, the quantification of bacterial populations in the environment is difficult owing to the challenges of monitoring a specific bacterial population within a diverse microbial community. Conventional methods are unable to detect and quantify the growth of individual strains separately in the mixed culture reactor. This work describes a novel quantitative PCR (qPCR)-based genomic approach to quantify each species in mixed culture and interpret its growth kinetics in the mixed system. Batch experiments were performed for both single and dual cultures of Pseudomonas putida and Escherichia coli K12 to obtain Monod kinetic parameters (μmax and Ks). The growth curves and kinetics obtained by conventional methods (i.e., dry weight measurement and absorbance reading) were compared with that obtained by qPCR assay. We anticipate that the adoption of this qPCR-based genomic assay can contribute significantly to traditional microbial kinetics, modeling practice, and the operation of bioreactors, where handling of complex mixed cultures is required.

예측미생물을 이용한 미강식이섬유 함유 프랑크푸르터 소시지의 유통기한 설정 (Shelf-life Estimation of Frankfurter Sausage Containing Dietary Fiber from Rice Bran Using Predictive Modeling)

  • 허찬;김현욱;최윤상;김천제;백현동
    • 한국축산식품학회지
    • /
    • 제29권1호
    • /
    • pp.47-54
    • /
    • 2009
  • Predictive modeling was applied to study the growth of microorganisms related to spoilage in frankfurter sausage containing various levels of dietary fiber (0, 1, 2, and 3%) from rice bran and to estimate its shelf-life. Using the Baranyi model, total viable cells, anaerobic and psychrotrophic bacteria were measured during 35 days of cold storage ($<4{\pm}1^{\circ}C$). The lag times (LT) demonstrated by control and treatment groups were 6.28, 623, 6.24, and 6.25 days, respectively. The growth rate of total viable cells in each group were 0.95, 0.91, 0.92, and 0.91 (Log CFU/g/day), respectively. The anaerobic and psychrotrophic bacteria had lower initial ($y_0$) and maximal bacterial counts ($y_{max}$) than total viable cells. Also, the anaerobic and psychrotrophic bacteria possessed lower growth rate and longer lag time than total viable cells. The estimated shelf-life of frankfurter containing rice bran fiber by the growth rate of total viable cells was 7.8, 7.9, 7.9, and 7.7 days, respectively. There were no significant differences in shelf-life as a function of fiber content. In other words, the addition of dietary fiber in sausage did not show the critically hazardous results in growth of microorganism. The 12 predictive models were then characterized by high $R^2$, and small RMSE. Furthermore, $B_f$ and $A_f$ values showed a very close relationship between the predictive and observed data.

동역학적 흡착 관계식을 이용한 다공 매질에서의 유동세균에 의한 유기성 오염물의 가속이송 예측 모델 (Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Kinetic Adsorption Relationships)

  • 김승현
    • 대한지하수환경학회지
    • /
    • 제2권1호
    • /
    • pp.22-29
    • /
    • 1995
  • 유동 세균 입자는 지체계수를 감소시키므로써 지하수에서 소수성 오염물의 이동을 촉진시킨다. 그 크기와 표면의 적당한 물리화학적 조건으로 인하여 세균은 효율적인 오염물의 운반자가 될 수 있다. 이러한 운반자가 있을 때, 그 계는 액상, 입상, 그리고 고상의 3 상으로 해석되어야한다. 오염물은 각 상에 모두, 혹은 그 중의 일부에 존재할 수 도 있다. 본 연구에서는 세균이 있는 경우, 생화학적으로 분해 가능한 유기성 오염물의 다공매질에서의 거동을 물질수지에 기초하여 수학적 모델로 묘사한다. 세균의 액상과 고상사이의 물질 전이 및 오염물의 액상과 입상사이의 물질 전이는 동역학적 관계식으로 나타냈다. 모델 결과를 일반화하기 위하여 무차원화를 수행했고, 그 해를 구하여 세균에 의한 오염물의 가속이송 효과를 알 수 있었다. 모델 결과는 문헌상의 실험결과와 비교되었다. 모델 결과로부터 오염물은 그 계의 Damkohler I 수가 10 이상일 경우 국지 평형 가정을 할 수 있었으며, 세균의 성장율과 주입 농도 등이 오염물의 청소에 아주 중요한 요소임을 알 수 있었다.

  • PDF

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권3호
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

Development of Kinetic Models Describing Kinetic Behavior of Bacillus cereus and Staphylococcus aureus in Milk

  • Kim, Hyoun Wook;Lee, Sun-Ah;Yoon, Yohan;Paik, Hyun-Dong;Ham, Jun-Sang;Han, Sang-Ha;Seo, Kuk-Hwan;Jang, Aera;Park, Bum-Young;Oh, Mi-Hwa
    • 한국축산식품학회지
    • /
    • 제33권2호
    • /
    • pp.155-161
    • /
    • 2013
  • This study developed predictive models to evaluate the kinetic behaviors of Bacillus cereus and Staphylococcus aureus in milk during storage at various temperatures. B. cereus and S. aureus (3 Log CFU/mL) were inoculated into milk and stored at $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$, as well as $5^{\circ}C$, $15^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$, respectively, while bacterial populations were enumerated. The growth data were fitted to the modified Gompertz model to estimate kinetic parameters, including the maximum specific growth rate (${\mu}_{max}$; Log CFU/[$mL{\cdot}h$]), lag phase duration (LPD; h), lower asymptote ($N_0$; Log CFU/mL), and upper asymptote ($N_{max}$; Log CFU/mL). To describe the kinetic behavior of B. cereus and S. aureus, the parameters were fitted to the square root model as a function of storage temperature. Finally, the developed models were validated with the observed data, and Bias (B) and Accuracy (A) factors were calculated. Cell counts of both bacteria increased with storage time. Primary modeling yielded the following parameters; ${\mu}_{max}$: 0.14-0.75 and 0.06-0.51 Log CFU/mL/h; LPD: 1.78-14.03 and 0.00-1.44 h, $N_0$: 3.10-3.37 and 2.09-3.07 Log CFU/mL, and $N_{max}$: 7.59-8.87 and 8.60-9.32 Log CFU/mL for B. cereus and S. aureus, respectively. Secondary modeling yielded a determination of coefficient ($R^2$) of 0.926.0.996. B factors were 1.20 and 0.94, and A factors were 1.16 and 1.08 for B. cereus and S. aureus, respectively. Thus, the mathematical models developed here should be useful in describing the kinetic behaviors of B. cereus and S. aureus in milk during storage.

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana;Florez, July;Angulo, Edgardo;Varela-Prieto, Lourdes;Infante, Cherlys;Barrios, Fredy;Barraza, Beatriz;Gallardo, D.I;Valdes, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1138-1149
    • /
    • 2017
  • The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.

유류와 중금속으로 오염된 토양에서 분리한 미생물의 Pb와 Cd 생물흡착 특성 (Biosorption of Pb and Cd by Indigenous Bacteria Isolated from Soil Contaminated with Oil and Heavy Metals)

  • 김상호;전효택;이종운
    • 자원환경지질
    • /
    • 제42권5호
    • /
    • pp.427-434
    • /
    • 2009
  • 유류 및 중금속으로 오염된 토양에서 Pb 및 Cd에 내성을 갖는 미생물을 분리하여 미생물 내 중금속 흡착 특성을 조사하였다. 분리한 토착미생물의 Pb 및 Cd의 흡착특성과 흡착에 영향을 미치는 요인 중에 생장단계, 중금속 농도, 생물량, pH, 온도에 따른 영향을 비교하였다. 또한 흡착등온식을 적용하여 중금속의 흡착용량과 흡착강도를 알아보았다. 낮은 중금속 초기 농도와 높은 생물량에서 높은 중금속 제거 효율을 가지며 중금속 마다 다른 흡착 효율을 보여 주었다. 흡착 효율은 미생물 생장 말기, pH 5~9 조건에서 최적의 효율을 나타내었으나, 25~$35^{\circ}C$에서 온도 변화에 따른 영향은 미미하였다. 생물흡착 과정을 Langmuir 등온 흡착식에 적용하면, 이론적 최대 흡착량은 Pb와 Cd에 대해서 각각 62.11과 192.31 mg/g로 나타났고, $R^2$가 0.71과 0.98로 계산되었다. Cd는 세포 표면의 단일 층에 단분자 흡착에 의한 생물흡착이 진행되었으나, Pb는 미생물 대사 작용을 통한 세포 내로의 축적 작용과 미생물 내 음이온과의 반응에 의한 침전물 형성작용 둥을 통하여 생물흡착이 진행된 것으로 판단된다.

조류 성장 억제를 위한 녹조 및 적조 발생과 황사의 상관관계 초기적 연구 (An Initiative Study on Relationship between Algal Blooms and Asian Dust for Regulation of Algal Blooms)

  • 김태진;정재칠;서라벌;김형모;김대근;전영신;박순웅;이세윤;박준조;이진하;이재정;이은주
    • KSBB Journal
    • /
    • 제29권4호
    • /
    • pp.285-296
    • /
    • 2014
  • Although the problems of the algal blooms have been world-widely observed in freshwater, estuary, and marine throughout the year, it is not yet certain what are the basic causes of such blooms. Consequently, it is very difficult to predict when and where algal blooms occur. The constituents of the Asian dust are in a good agreement with the elements required for the algal growth, which suggests some possible relationship between the algal blooms and the Asian dust. There have been frequently algal blooms in drinking water from rivers or lakes. However, there is no any algal blooms in upwelling waters where the Asian dust cannot penetrate into the soil due to its relatively weak settling velocity (size of particles, $4.5{\pm}1.5{\mu}m$), which implies the possible close relationship of the Asian dust with algal blooms. The present initiative study is thus intended firstly in Korea to illustrate such a relationship by reviewing typical previous studies along with 12 years of weekly iron profiles (2001~2012) and two slant culture experiments with the dissolved Asian dust. The result showed bacterial suspected colonies in the slant culture experiment that are qualitatively in a good agreement with the recent Japanese studies. Since the diatoms require cheap energy (8%) compared to other phytoplankton (100%) to synthesize their cell walls by silicate, the present results can be used to predict algal blooms by diatoms if the concentrations of iron and silicate are available during spring and fall. It can be postulated that the algal blooms occur only if the environmental factors such as light, nutrients, calm water surface layer, temperature, and pH are simultaneously satisfied with the requirements of the micronutrients of mineral ions supplied by the Asian dust as enzymatic cofactors for the rapid bio-synthesis of the macromolecules during algal blooms. Simple eco-friendly methods to regulate the algal blooms are suggested for the initial stage of blooming with limited area: 1) to cover up the water surface with black curtain and inhibit photosynthesis during the day time, 2) to blow air (20.9%) or pure oxygen into the bottom of the water and inhibit rubisco for carbon uptake and nitrate reductase for nitrogen uptake activities in algal growth during the night, 3) to eliminate the resting spores or cysts by suction of bottom sediments as deep as 5 cm to prevent the next year germinations.