• Title/Summary/Keyword: bacterial growth

Search Result 2,007, Processing Time 0.04 seconds

Exploring the Potential of Bacteria-Assisted Phytoremediation of Arsenic-Contaminated Soils

  • Shagol, Charlotte C.;Chauhan, Puneet S.;Kim, Ki-Yoon;Lee, Sun-Mi;Chung, Jong-Bae;Park, Kee-Woong;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.58-66
    • /
    • 2011
  • Arsenic pollution is a serious global concern which affects all life forms. Being a toxic metalloid, the continued search for appropriate technologies for its remediation is needed. Phytoremediation, the use of green plants, is not only a low cost but also an environmentally friendly approach for metal uptake and stabilization. However, its application is limited by slow plant growth which is further aggravated by the phytotoxic effect of the pollutant. Attempts to address these constraints were done by exploiting plant-microbe interactions which offers more advantages for phytoremediation. Several bacterial mechanisms that can increase the efficiency of phytoremediation of As are nitrogen fixation, phosphate solubilization, siderophore production, ACC deaminase activity and growth regulator production. Many have been reported for other metals, but few for arsenic. This mini-review attempts to present what has been done so far in exploring plants and their rhizosphere microbiota and some genetic manipulations to increase the efficiency of arsenic soil phytoremediation.

Isolation and Characterization of Diesel Oil Degrading Bacterium, Pseudomonas sp. GENECO 1 Isolated from Oil Contaminated Soil (유류 오염 토양으로부터 분리한 디젤 분해 세균 Pseudomonas sp. GENECO 1의 분리 및 특성 규명)

  • 이종광;김무훈;박형수
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.102-107
    • /
    • 2003
  • With the enrichment culture technique, bacterial strains which degrade diesel oil were isolated from soil contaminated with diesel oil. One of the isolates named GENECO 1 showed the highest activity for emulsification of diesel oil as well as the highest growth rate. This strain, GENECO 1, was identified as a Pseudomonas sp. based on its biochemical, physiological characteristics and 16S rDNA sequences. The optimal cultural conditions for cell growth and oil emulsifying activity of its culture were as follow; $30^{\circ}C$ for temperature, 7.0 for pH. Diesel oil degradation was analysed by the gas chromatography. More than 95% of 1% treated diesel oil were converted into a form no longer extractable by mixed organic solvents after 96 hours incubation.

Antimicrobial Activity and Bactericidal Activity of Caesalpinia sappan L. Extract (소목 추출물의 항균력 및 살균소독력)

  • Lee, Jin-Young;Min, Kyung-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.133-140
    • /
    • 2011
  • Antimicrobial activity and bactericidal activity of Caesalpinia sappan L. extracts were investigated against five food-borne pathogens, E. coli, S. aureus, S. typhimurium, B. cereus and L. monocytogenes. Methanol extract of Caesalpinia sappan L. revealed antimicrobial activities against five pathogens. In particular, by paper disc diffusion the highest activity was shown against L. monocytogenes. Antimicrobial activities of methanol extracts showed the most potent activities, but hexane fraction had no activity. Fractions of ethyl acetate and butanol turned out to have higher antimicrobial activities against Gram(+) bacteria than Gram(-) bacteria. The minimum inhibitory concentration against five food-borne pathogens was 1.563 mg/ml on Gram(+) bacteria and 3.125 mg/ml on Gram(-) bacteria. The result of antimicrobial activity in a shaking flask method showed that bacterial growth rate fell by more than 99.999% at 3.125 mg/ml of methanol extract. The highest rate of viable reduction (99.998%) was shown at 0.781 mg/ml of methanol extract against L. monocytogenes. After five minutes of reaction between test strains and methanol extracts, the growth rates of five kinds of bacteria were reduced by more than 99.999% at a concentration of 100 mg/ml. Therefore, it is suggested that methanol extracts of Caesalpinia sappan L. can be developed as a natural sanitizer or disinfectant.

Biological Activities of Essential Oils from Angelica tenuissima Nakai

  • Roh, Junghyun;Shin, Seungwon
    • Natural Product Sciences
    • /
    • v.19 no.4
    • /
    • pp.297-302
    • /
    • 2013
  • The current study was conducted to evaluate the antibacterial and antioxidant activities of the essential oil fraction from the roots of Angelica tenuissima Nakai and its main components. We extracted the essential oil fraction from the roots of A. tenuissima using steam distillation and isolated its main components. Their antibacterial activities were determined by broth dilution test against food-borne pathogenic bacteria. Antioxidant activities were evaluated by DPPH-scavenging assay and reducing-power test. Also tested was their ability to inhibit the growth of two gastrointestinal cancer cell lines, Caco-2 and MKN-45. The A. tenuissima oil fraction and its main components, ligustilide and butylidene phthalide exhibited marked inhibitory effects against most of the tested antibiotic-susceptible and antibiotic-resistant bacterial strains with minimum inhibiting concentrations (MICs) from $0.21{\pm}0.08$ to $3.60{\pm}0.89mg/ml$. They also showed growth-inhibiting activity against Caco-2 and MKN-45 cells. The oil fraction showed significant antioxidant activities in DPPH radical scavenging assay and reducing-power test. Taken together, A. tenuissima essential oil could be used as a safe additive for preventing food contamination by pathogenic bacteria. Additionally, its antioxidative activity and the ability to inhibit gastrointestinal carcinoma cell lines could increase its value for functional foods and prevention of cancer.

Identification and Characterization of pH-Regulated Genes in Saccharomyces cerevisiae

  • Hong, Sung-Ki;Choi, Eui-Yul
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 1996
  • Yeast, like many other microbes, encounters large variations in ambient pH in their natural environments. Microorganisms capable of growing over a wide pH range require a versatile, efficient pH homeostatic mechanism protecting intracellular processes against extremes of pH. In several organisms, fusions to the bacterial lacZ gene have been extremely useful for the identification of genes expressed at different time during the life cycle or under different growth conditions. In this study, using the lacZ gene screening system, we surveyed a large number of yeast strains with lacZ insertion to identify genes regulated by pH. A yeast genomic library was constructed and inserted with lacZ by a shuttle mutagenesis procedure. The yeast transformants were individually picked up with a toothpick, replica-plated, and grown in alkaline pH medium. Among the 35,000 colonies screened, 10 candidate strains were identified initially by the $\beta$-gal assay. We finally confirmed two yeast strains carrying the genes whose expression are strictly dependent on pH of growth medium. One of the fusions showing a 10-fold induction in expression level in response to alkali pH was selected and further characterized. The pH-regulated gene was cloned by inverse PCR and a partial sequence of the gene was determined. Identification and characterization of the gene is currently under investigation.

  • PDF

Dynamics of Mixed-Cultures of Gluconobacter suboxydans and Saccharomyces uvarum

  • Paik, Hyun-Dong;Oh, Doo-Whan
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • A mixed-culture of Gluconobacter suboxydans IFO 3172 and Saccharomyces uvarum IFO 0751 was per-formed in a synthetic medium. the optimal inculum ratio of G. suboydans and S. uvarum for mixed-culture fermentation was 150:1. The optimum pH, incubation temperature and aeration rate for mixed-culture fer- mentation were 5.0, 3$0^{\circ}C$ and 2.25vvm, reapectively. As a result of batch pure-and mixed-culture fer-mentation, specific growth rate in pure-culture of both strain was lower than that in mixed-culture. The yield of cell mass from S. uvarum exclusively decreased. The growth rate of the mixed-culture was very similar to the pure-culture in the begining of culture, but it has been decreased after 16hrs. In the mean time, S. uvarum in mixed-culture fermentation could grow due to fructose converted, but it could not row in pure-culture fermentation. Thus, the relationship was a sort of commensalism. The kinetic parameters cal-culated through steady-state results during continuous fermentations are as follows :{TEX}$$\mu$_{max1}${/TEX}=0.118({TEX}$h^{-1}${/TEX}), {TEX}$Ks_{1}${/TEX}=0.330(g/L),:{TEX}$$\mu$_{max2}${/TEX}=0.162({TEX}$h^{-1}${/TEX}), {TEX}$Ks_{2}${/TEX}=0.038(g/L). The yield of bacterial cell mass relatively constant, but yield of yest cell mass was gradually decreased.

  • PDF

Novel Starter Culture for Kimchi, Using Bacteriocin-producing Enterococcus faecium Strain (Enterococcus faecium bacteriocin 생산균주를 starter로 이용한 김치의 제조)

  • 하덕모;차동수
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.550-556
    • /
    • 1994
  • For an extension of the palatable stage in Kimchi which was limited by further lowering pH as the fermentation proceeds, the starter culture of bacteriocin-producing Enterococcus faecium DU 0267 obtained from Kimchi was added at the preparation time, and pH, bacteriocin activity, growth of lactic acid bacterial group and gas production in Kimchi were examined during the fermentation at 10, 20 and 30$\circ$C . The pH of Kimchi fell rapidly to 4.0~4.2 in the early fermentation stage, and then, has gone down very slowly throughout further fermentation. The lactic acid bacte- ria, particularly lactobacilli and leuconostoc, were remarkably slower in its growth than those in the control. Although the patterns of these change during fermentation at different temperatures were similar, these effects by the addition of starter were enhanced at 10 and 20$\circ$C. The bacteriocin activity was increased rapidly during log phase of the bacteriocin producer strain in the early fermentation stage of Kimchi and reached their maximum after fermentation at 10$\circC, for 8 days and at 20 or 30$\circ$C for 2 days. Thereafter, the activity disappeared quickly. The gas production by fermentation was also suppressed considerably, and their volume produced after fermentation at 20$\circ$C for 14 days corresponded to 60% of those of the control.

  • PDF

Effect of AL072, a Novel Anti-Legionella Antibiotic, on Growth and Cell Morphology of Legionella pneumophila

  • Kang, Byeong-Cheol;Park, Jae-Hak;Lee, Yong-Soon;Suh, Jung-Woo;Chang, Jun-Hwan;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.371-375
    • /
    • 1999
  • AL072 is a potent anti-Legionella antibiotic produced by Streptomyces strain AL91. The minimum inhibitory concentration (MIC) of AL072 against Legionella pneumophila was 0.2$\mu$g/ml. Bacterial growth was rapidly inhibited at the dose range between the MIC and 20 times of the MIC when the antibiotic was added at the mid-exponential phase. Ultrastructural changes in L. pneumophila were observed upon treatment with AL072. Under electron microscopical observation, the organisms treated with AL072 exhibited characteristic morphological changes in the cellular outer coat. Also irregular morphological changes, such as the formation of filamentous materials in the cytoplasm, an increase in the size and number of cytoplasmic vacuoles, the extruding of cytoplasmic contents, the formation of spheroplast and ghost cells, and blebbings in the cell wall were observed. Furthermore, immunoelectron microscopical observation of the group treated with the MIC showed that the immune complex attached mainly to the cell wall. The results of these experiments indicate that AL072, like the inhibitors of cell wall synthesis, act selectively on the cell wall of L. pneumophila.

  • PDF

Isoflavones and biotransformed dihydrodaidzein in hairy roots of Korean wild arrowroot

  • Lee, Eunji;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.125-131
    • /
    • 2016
  • Pueraria lobata is a perennial legume plant that produces a variety of isoflavones, such as puerarin, daidzin and daidzein. These are metabolized to equol via dihydrodaidzein and tetrahydrodaidzein by the bacterial fermentation of natural isoflavone sources in the human intestines. In this study, we described the growth and accumulation of isoflavone in the hairy root of the Korean wild arrowroot according to the culture period, as well as dihydrodaidzein biosynthesis in hairy root extracts fermented with Pediococcus pentosaceus. Daily proliferation was best in DY1 cultured for 1 week. DY1 showed significant differences in daily production of puerarin and daidzin+daidzein, as compared to DJ7; furthermore, both were best in DY1 cultured for 1 week. The hairy root extract was fermented successfully with P. pentosaceus with confirmed production of dihydrodaidzein, an equol precursor formed by biotransformation. The results indicated that the growth of hairy roots and isoflavone accumulation in the hairy roots is best 1 week after culture. These results are expected to contribute to the mass production of hairy root and isoflavones as equol precursors from the Korean wild arrowroot and provide a basis for equol production by biotransformation in vitro.

Growth Conditions of Rope Bacteria Isolated from Korean Wheat Bread (우리밀 식빵에서 분리된 로프박테리아의 생육 조건)

  • Chun, Euk-Han;Lee, Kwang-Suck
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.734-738
    • /
    • 1999
  • Bacterial strain showing the ropy characteristics was isolated from Korean wheat bread. Morphology of the isolate was rod and biochemical test revealed that the isolate was Bacillus subtilis. Growth of rope bacteria was about the same as other Bacillus species and inhibited below pH 5.6. Rope bacteria isolated from Korean wheat bread could not survive under the heat treatment of 10 min at $100^{\circ}C$, but could survive at $90^{\circ}C$.

  • PDF