• Title/Summary/Keyword: bacterial cellulose

Search Result 191, Processing Time 0.016 seconds

Effects of Non-ionic Surfactant Tween 80 on the in vitro Gas Production, Dry Matter Digestibility, Enzyme Activity and Microbial Growth Rate by Rumen Mixed Microorganisms (비이온성 계면활성제 Tween 80의 첨가가 반추위 혼합 미생물에 의한 in vitro 가스발생량, 건물소화율, 효소활력 및 미생물 성장율에 미치는 영향)

  • Lee, Shin-Ja;Kim, Wan-Young;Moon, Yea-Hwang;Kim, Hyeon-Shup;Kim, Kyoung-Hoon;Ha, Jong-Kyu;Lee, Sung-Sil
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1660-1668
    • /
    • 2007
  • The non-ionic surfactant (NIS) Tween 80 was evaluated for its ability to influence invitro cumulative gas production, dry matter digestibility, cellulolytic enzyme activities, anaerobic microbial growth rates, and adhesion to substrates by mixed rumen microorganisms on rice straw, alfalfa hay, cellulose filter paper and tall fescue hay. The addition of NIS Tween 80 at a level of 0.05% increased significantly (P<0.05) in vitro DM digestibility, cumulative gas production, microbial growth rate and cellulolytic enzyme activity from all of substrates used in this study. In vitro cumulative gas production from the NIS-treated substrates; rice straw, alfalfa hay, filter paper and tall fescue hay was significantly (P<0.05) improved by 274.8, 235.2, 231.1 and 719.5% compared with the control, when substrates were incubated for 48 hr in vitro. The addition of 0.05% NIS Tween 80 to cultures growing on alfalfa hay resulted in a significant increase in CMCase (38.1%), xylanase (121.4%), Avicelase (not changed) and amylase (38.2%) activities after 36 h incubation. These results indicated that the addition of 0.05% Tween 80 could greatly stimulate the release of some kinds of cellulolytic enzymes without decreasing cell growth rate in contrast to trends reported with aerobic microorganism. Our SEM observation showed that NIS Tween. 80 did not influence the microbial adhesion to substrates used in the study. Present data clearly show that improved gas production, DM digestibility and cellulolytic enzyme activity by Tween 80 is not due to increased bacterial adhesion on the substrates.