• Title/Summary/Keyword: bacterial cell growth

Search Result 415, Processing Time 0.018 seconds

Introduction of a Bacterial Hemoglobin Gene for Improving Bacterial Growth under Hypoxic Condition

  • Chung, Chung-Nam;Yoon, Suk-Ran;Jun, Woo-Jin;Shim, Sang-In;Park, In-Ho;Chung, Jin-Woong
    • Journal of agriculture & life science
    • /
    • v.43 no.6
    • /
    • pp.77-84
    • /
    • 2009
  • Using recombinant DNA technology, the vector system containing minimal fragment of a bacterial hemoglobin gene (vgb) was constructed. When this vector was inserted into Escherichia coli, the growth of the host was significantly improved in both viable cell counts and absorbance measurement, compared to that of the wild type strain. In addition, by minimizing the size of bacterial hemoglobin in the vector, the ability of vgb in growth improvement was augmented, due to the reduction of metabolic burden from the maintenance and replication of the plasmid. By using this system, it is expected that the growth of microorganisms can be improved even in the hypoxic condition.

Antimicrobial activities and effect of grapefruit seed extract on the physiological function of microorganism (Grapefruit 종자 추출물의 항균작용 및 미생물 생리기능에 미치는 영향)

  • 김영록;조성환
    • Food Science and Preservation
    • /
    • v.3 no.2
    • /
    • pp.187-193
    • /
    • 1996
  • To investigate the antimicrobial activities and effect of grapefruit seed extract(GFSE) on the physiological function of microorganism, antimicrobial activity, fatty acids of bacterial cell lipid and amino acids of bacterial cell protein were measured. The change of cell morphotype was observed by transmission electron microscope. GFSE was very stable on the wide range temperture and pH. The growth rate of E. coli and B. suvtilis were decreased above 40ppm GFSE There fore, minimum inhibitory concentration (MIC) of the E. coli and B. subtilis to GFSE were determined around 40ppm. In the change of fatty acids quantities, hexadecanoate was significantly decreased on the treatment compared with control in case of E. coli, whereas tridecanoate was not detected in case of B. subtilis. In the change of amino acids quantities, alanine, glutamic acid, glycine, lysine were decreased on the treatment compared with control in case of E. coli and B. subtilis Transmission electron microsgraphs(TEM) showed the microbial cells were destroyed by GFSE.

  • PDF

Utilization of Ruminal Epithelial Cells by Ruminococcus albus, with or without Rumen Protozoa, and Its Effect on Bacterial Growth

  • Goto, M.;Karita, S.;Yahaya, M.S.;Kim, W.;Nakayama, E.;Yamada, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Effects of supplementation with ruminal epithelial cells on fiber-degrading activity and cell growth of Ruminococcus albus (R. albus, strain 7) was tested using a basal substrate of rice straw and formulated concentrate. Cultures of R. albus alone and R. albus with rumen protozoa were grown at $39^{\circ}C$ for 48 h with an 8.4% crude protein (CP) substrate, 33% of the CP supplemented with either ruminal epithelial cells or defatted soybean meal. The ruminal epithelial cells had lower amounts of rumen soluble and degradable protein fractions as compared to defatted soybean meal, as determined by an enzymatic method, and the same was found with amino acid composition of protein hydrolysates. Ruminal epithelial cells were directly utilized by the R. albus, and resulted in greater growth of cell-wall free bacteria compared to defatted soybean meal. The effect of epithelial cells on bacterial growth was enhanced by the presence of rumen protozoa. In consistency with cultures of R. albus and R. albus with rumen protozoa, fermentative parameters such as dry matter degradability and total volatile fatty acid did not differ between supplementation with ruminal epithelial cells or defatted soybean meal.

Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria

  • Young Hee Lee;Yun-Hee Kim;Jeum Kyu Hong
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.358-376
    • /
    • 2024
  • Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.

Effects of Alcohols on the Production of Bacterial Cellulose (알콜류가 Bacterial Cellulose의 생산에 미치는 영향)

  • 정재용;박연희;박중곤
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.127-132
    • /
    • 2003
  • The effect of 4 kinds of alcohols was investigated on the production of bacterial cellulose (BC) by Gluconacetobacter hansenii PJK. The addition of alcohols and acetic acid to medium caused the pellets of bacterial cellulose to aggregate into a lump, which could be easily separated from the culture medium. The growth rate of cells and the production yield of BC increased in the medium containing ethanol. Other alcohols in the medium decreased cell growth and the cellulose production rate, because of their toxic effects. The addition of ethanol depressed the conversion of a $\textrm{Cel}^{+}$ cell to a $\textrm{Cel}^{-}$ mutant in shaking culture. Cells subcultured three in a medium containing ethanol produced BC without any loss of BC production yield.

Isolation of Bacteria Associated with the King Oyster Mushroom, Pleurotus eryngii

  • Lim, Yun-Jung;Ryu, Jae-San;Shi, Shanliang;Noh, Won;Kim, Eon-Mi;Le, Quy Yang;Lee, Hyun-Sook;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Eight distinct bacteria were isolated form diseased mycelia of the edible mushroom, Pleurotus eryngii. 16S rDNA sequence analysis showed that the isolates belonged to a variety of bacterial genera including Bacillus (LBS5), Enterobacter (LBS1), Sphingomonas (LBS8 and LBS10), Staphylococcus (LBS3, LBS4 and LBS9) and Moraxella (LBS6). Among them, 4 bacterial isolates including LBS1, LBS4, LBS5, and LBS9 evidenced growth inhibitory activity on the mushroom mycelia. The inhibitory activity on the growth of the mushroom fruiting bodies was evaluated by the treatment of the bacterial culture broth or the heat-treated cell-free supernatant of the broth. The treatment of the culture broths or the cell-free supernatants of LBS4 or LBS9 completely inhibited the formation of the fruiting body, thereby suggesting that the inhibitory agent is a heat-stable compound. In the case of LBS5, only the bacterial cell-containing culture broth was capable of inhibiting the formation of the fruiting body, whereas the cell-free supernatant did not, which suggests that an inhibitory agent generated by LBS5 is a protein or a heat-labile chemical compound, potentially a fungal cell wall-degrading enzyme. The culture broth of LBS1 was not inhibitory. However, its cell-free supernatant was capable of inhibiting the formation of fruiting bodies. This indicates that LBS1 may produce an inhibitory heat-stable chemical compound which is readily degraded by its own secreted enzyme.

Genotoxicity study of Aralia elata extract in bacterial and mammalian cell system (두릅나무 추출물의 유전독성평가)

  • 정영신;이석종;최선아;이장하;류재천;홍은경
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.319-323
    • /
    • 2002
  • In order to investigate the safety of Aralia elata extract causing the reduction in the blood glucose level and oxidative stress in diabetes animals, these genotoxicity studies in bacterial and mammalian cell assay system such as Ames bacterial reverse mutation test and chromosomal aberration assay were performed. As results, in Ames bacterial reversion assay the extract in the range of 5,000-625 ug/plate did not induce mutagenicity in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains with and without metabolic activation of S-9 mixture. For chromosomal aberration assay, $IC_{50}$ (50% inhibition concentration of cell growth) of the extract were determined; 792 $\mu\textrm{g}$/$m\ell$ without and 524 $\mu\textrm{g}$/$m\ell$ with S-9 mixture in Chinese hamster lung (CHL) fibroblast cell culture. Any significant chromosomal aberration was not observed in CHL cells treated with the extract at the concentrations of 792, 396 and 198 $\mu\textrm{g}$/$m\ell$ or 524, 262 and 131 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation, respectively. From these results, Aralia elata extract did not induce any harmful effects on the gene in bacteria and mammalian cell system used in these experiments.

  • PDF

Biodegradation of Triehloroethylene by a Phenol-Utilizing Bacterium (Phenol을 이용한 균주에 의한 Trichloroethylene분해)

  • 이숙희;홍성용;하지홍
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 1994
  • The bacterial strain which utilizes phenol and degrade TCE was isolated from an industrial waste site. The bacterial strain was named as T5-7 and identified as an Acinetobacter species. After phenol-induction, the strain T5-7 removed TCE efficiently without cell growth. So, it seems that TCE degradation was not related to cell growth. TCE degradation increased when initial cell concentrations of phenol-grown T5-7 were high. In the presence of phenol, initial degradation of TCE was delayed but total amount of degradation was not affected at final stage. The strain cultured in 0.1% yeast extract did not degrade TCE, which indicates that phenol induction was essential to the TCE degradation.

  • PDF

Genotoxicity Study of Sophoricoside, a Constituent of Sophora japonica, in Bacterial and Mammalian Cell System

  • Kim, Youn-Jung;Park, Hyo-Joung;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2001
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to has an anti-inflammatory effect on rat paw edema model. To develope as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial reversion test, chromosomal aberration assay and single cell gel electrophoresis (Comet) assay. As results, in the range of 1,250~40 $\mu\textrm{g}$/plate sophoricoside concentrations was not shown significant mutagenic effects in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains in Ames test. The 80% cell growth inhibition concentration (IC/SUB 80/) of sophoricoside was determined as above 5,000 $\mu\textrm{g}$/$m\ell$ in Chinese hamster lung (CHL) fibroblast cell and L5178Y mouse lymphoma cell line for the chromosomal aberration and comet assay, respectively. Sophoricoside was not induced chromosomal aberration in CHL fibroblast cell at concentrations of 700, 350 and 175 $\mu\textrm{g}$/$m\ell$ or 600, 300 and 150 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation system, respectively. Also, in the comet assay, the induction of DNA damage was not observed in L5178Y mouse lymphoma cell line both in the absence or presence of S-9 metabolic activation system. From these results, no genotoxic effects of sophoricoside were observed in bacterial and mammalian cell systems used in these experiments.

  • PDF

Behavior of Bacteria on the Porous Substrates: Diffusion Effect (다공성 매질 표면에서 박테리아의 거동: 확산의 영향)

  • Cho, Myoung-Ock;Cho, Ji-Yong;Park, Eun-Jung;Lee, Dong-Hee;Lee, Jeong-Hoon;Kim, Jung-Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • It has been found that the colony size of bacteria grown on an agar plate decreases with increasing agar gel concentration. Evidenc from recent studies suggests that the bacterial colony dynamics is closely related with the mechanical properties of the substrate. We investigate whether bacterial growth on the agar substrate is controlled mostly by the nutrients' diffusion which is hindered more in porous medium than in solution. The number of bacterial cells in single colonies is found to be inversely correlated with agar concentration. High-resolution live cell imaging at the single bacterium level confirms that the bacterial growth rate is reduced with increasing agar concentration. There is a strong correlation between the slowed diffusion and the reduced number of cells in a high concentration of agar medium.