• Title/Summary/Keyword: bacteria counts

Search Result 917, Processing Time 0.032 seconds

국내 시판우유의 보관방법별 품질변화에 관한 연구

  • Jeong, Seok-Chan;Kim, Gye-Hui;Jeong, Myeong-Eun;Kim, Seong-Il;Byeon, Seong-Geun;Lee, Deuk-Sin;Park, Seong-Won;Jo, Nam-In;Kim, Ok-Gyeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.23-40
    • /
    • 2002
  • This study was conducted to investigate the quality changes of the UHT(ultra-high temperature), LTLT(law temperature long time) and HTST(high temperature short time) treated milk samples by storage conditions for 6 months from August 2000 to February 2001. The UHT treated milk samples collected from 3 plants(A, B and C) were stored at l0$^{\circ}$C and room temperature(dark and light exposure) for 6 months, and the LTLT and HTST treated milk samples(D and E) were also stored for 30 days. The UHT pasteurized milk of A, B and C plant was treated at 130$^{\circ}$C for 2-3s, 133$^{\circ}$C for 2-3s and 135$^{\circ}$C for 4s, respectively. The UHT sterilized milk of A and B plant was treated at 140$^{\circ}$C for 2-3s and 145$^{\circ}$C for 3-4s, respectively. The LTLT milk of D plant was treated at 63$^{\circ}$C for 30 mins, and the HTST milk of E plant was treated at 72$^{\circ}$C for 15s. All of the raw milk samples collected from storage tank in 5 milk plants were showed less than 4.0 X 10$^5$cfu/ml in standard plate count, and normal level in acidity, specific gravity, and component of milk. Preservatives, antibiotics, sulfonamides and available chloride were not detected in both raw and heat treated milk samples obtained from 5 plants. One(10%) of 10 UHT pasteurized milk samples obtained from B plant and 2 (20%) of 10 from C were not detected in bacterial count after storage at 37$^{\circ}$C for 14 days, but all of the 10 milk samples from A were detected. No coliforms were detected in all samples tested. No bacteria were also detected in carton, polyethylene and tetra packs collected from the milk plants. A total of 300 UHT pasteurized milk samples collected from 3 plants were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 and 6 months, 11.3%(34/300) were kept normal in sensory test, and 10.7%(32/300)were negative in bacterial count. The UHT pasteurized milk from A deteriorated faster than the UHT pasteurized milk from B and C. The bacterial counts in the UHT pasteurized milk samples stored at 10$^{\circ}$C were kept less than standard limit(2 ${\times}$ 10$^4$ cfu/ml) of bacteria for 5 days, and bacterial counts in some milk samples were a slightly increased more than the standard limit as time elapsed for 6 months. When the milk samples were stored at room(3$^{\circ}$C ${\sim}$ 30$^{\circ}$C), the bacterial counts in most of the milk samples from A plant were more than the standard limit after 3 days of storage, but in the 20%${\sim}$30%(4${\sim}$6/20) of the milk samples from B and C were less than the standard limit after 6 months of storage. The bacterial counts in the LTLT and HTST pasteurized milk samples were about 4.0 ${\times}$ 10$^3$ and 1.5 ${\times}$ 101CFU/ml at the production day, respectively. The bacterial counts in the samples were rapidly increased to more than 10$^7$ CFU/ml at room temperature(12$^{\circ}$C ${\sim}$ 30$^{\circ}$C) for 3 days, but were kept less than 2 ${\times}$ 10$^3$ CFU/ml at refrigerator(l0$^{\circ}$C) for 7 days of storage. The sensory quality and acidity of pasteurized milk were gradually changed in proportion to bacterial counts during storage at room temperature and 10$^{\circ}$C for 30 days or 6 months. The standard limit of bacteria in whole market milk was more sensitive than those of sensory and chemical test as standards to determine the unaccepted milk. No significant correlation was found in keeping quality of the milk samples between dark and light exposure at room for 30 days or 6 months. The compositions of fat, solids not fat, protein and lactose in milk samples were not significantly changed according to the storage conditions and time for 30 days or 6 months. The UHT sterilized milk samples(A plant ; 20 samples, B plant ; 110 samples) collected from 2 plants were not changed sensory, chemical and microbiological quality by storage conditions for 6 months, but only one sample from B was detected the bacteria after 60 days of storage. The shelflife of UHT pasteurized milk in this study was a little longer than that reported by previous surveys. Although the shelflife of UHT pasteurized milk made a significant difference among three milk plants, the results indicated that some UHT pasteurized milk in polyethylene coated carton pack could be stored at room temperature for 6 months. The LTLT and HTST pasteurized milk should be sanitarily handled, kept and transported under refrigerated condition(below 7$^{\circ}$C) in order to supply wholesome milk to consumers.

  • PDF

A Study on Microbial Aspects of Korean Human Milk by Collection Methods (수집방법에 따른 한국인 모유의 미생물 분포에 관한 연구)

  • 이조윤;배형철;남명수
    • Food Science of Animal Resources
    • /
    • v.23 no.3
    • /
    • pp.269-277
    • /
    • 2003
  • This study was carried out to evaluate the safety of Korean human milk. The microorganisms were identified from human milk of 149 healthy mothers by two collection methods, hand and pump expression. The means of total bacterial counts were 2.33x10$^4$ cfu/mL on the samples collected by the pump expression and 7.83xl0$^3$ cfu/mL on those collected by the hand expression. Therefore, the total bacterial counts of pump expression samples was 9.80xl0$^2$∼3.06x10$^4$ cfu/mL more than that of hand expression samples. The coliform counts of pump expression was 9.36xl0$^3$∼8.57xl0$^4$ cfu/mL more than that of hand expression. However, there was any significant differences of the lactic acid bacterial counts between the two samples collected by each methods. 100 strains of 5 patterns of total bacterial counts were isolated based on the morphology of colony in the standard plate count agar. 13 species were identified among the isolated strains. The dominant species in Korean human milk were Staphylococcus which 7 subspecies identified(81% in the rate of total bacteria, 1.07x10$^4$ cfu/mL). Other species identified were Micrococcus, Bacillus, Providencia, Pseudomonas, Yersinia and Acinetobacter. 36 strains of 6 patterns of lactic acid bacterial counts were isolated based on morphology of colony in the BCP agar. 7 species were identified among the isolated strains. The dominant species of lactic acid bacteria in Korean human milk were Lactobacillus brevis(50.9% in the rate of lactic acid bacteria, 4.72xl0$^4$ cfu/mL). Others species identified(49.1% lactic acid bacteria) were Lactobacillus curvatus, Lactobacillus delbrueckii subsp. lactis, Lactobacillus acidophilus, Leuconostic lactis and Streptococcus salivarius subsp. thermophilus.

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) During the Ripening and Fermentation-Part 2

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2008
  • The Chinese cabbage kimchi, baechoo-kimchi, is the most popular type of kimchi in Korea. This study was performed to investigate the changes of index microorganisms (aerobic bacteria, psychrotrophilic bacteria, coliforms, and Escherichia coli), lactic acid bacteria, pH, and acidity of kimchi during the long-term fermentation and ripening. A homemade-style traditional Korean baechoo-kimchi, was prepared from Chinese cabbage, red pepper, green onion, garlic, ginger, and salt-fermented anchovy sauce, and then incubated at $10^{\circ}C$ for 28 days. In the baechoo-kimchi, the number of aerobic bacteria increased with time. The number of psychrotrophilic bacteria maintained their numbers $(10^4CFU/g)$ in the kimchi during the fermentation. Coliforms and E. coli were not detected in the kimchi. The pH of kimchi decreased and the acidity of kimchi increased over time. Lactic acid bacteria, which are representative of fermentative microorganisms in the kimchi process showed rapid growth in the earlier stage of fermentation and increased steadily after 7 days. The counts of lactic acid bacteria were at a level of $10^4CFU/g$ early in the fermentation stage, reaching a level of $10^8CFU/g$ after 14 days, and at this point pH was 4.18 and acidity reached 0.63, indicating that the optimal state of kimchi fermentation. This study suggests that the lactic acid bacteria which were proliferated in kimchi during the ripening and fermentation could contribute to improving the taste and flavor of kimchi and inhibit the growth of pathogenic microorganisms that might exist in kimchi.

Thermal Inactivation of Sodium-Habituated Staphylococcus aureus in Ready-to-Heat Sauces

  • Park, Ahreum;Lee, Jinhee;Jeong, Sook-Jin;Hwang, In-Gyun;Lee, Soon-Ho;Cho, Joon-Il;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.713-717
    • /
    • 2012
  • The objective of this study was to evaluate the effect of sodium habituation on thermal resistance of Staphylococcus aureus in various ready-to-heat (RTH) sauces. The strain mixture of S. aureus strains KACC10768, KACC10778, KACC11596, KACC13236 and NCCP10862 was habituated up to 9% of NaCl. The inocula of NaCl-habituated and non-habituated S. aureus were inoculated in 5 g portions of pork cutlet, meat and Carbonara sauces at 7 Log CFU/g, and the samples were vortexed vigorously. The inoculated samples were then exposed to 60 and $70^{\circ}C$ in a water-bath, and survivals of total bacteria and S. aureus were enumerated on tryptic soy agar and mannitol salt agar, respectively, every 30 min for 120 min. At 60oC, the cell counts of total bacteria and the significant difference in survivals between sodium-habituated and non-habituated S. aureus were observed only in the Carbonara sauce; the tailing effect, which is the period of no reduction of bacterial cell counts, was observed in pork cutlet, meat and Carbonara sauces subjected to $60^{\circ}C$. At $70^{\circ}C$, total bacterial populations and sodium-habituated and non-habituated S. aureus cell counts in meat and Carbonara sauce also significantly decreased (p<0.05) after 30 min of heat treatment, followed by the obvious tailing effect. Sodium-habituated S. aureus cell counts in meat and Carbonara sauces were higher (p<0.05) than those of non-habituated S. aureus at $70^{\circ}C$. The results indicate that sodium habituation of S. aureus cells may increase the thermal resistance of the pathogen in RTH sauces; moreover, heating RTH sauces for a short time before serving may not sufficiently decrease the cell counts of S. aureus, particularly for sodium-habituated strain.

Microbial Dynamics of Commercial Makgeolli Depending on the Storage Temperature

  • Kim, Hye-Ryun;Lee, Ae Ran;Kim, Jae-Ho;Ahn, Byung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1101-1106
    • /
    • 2012
  • Market fresh makgeolli was stored at different temperatures of $4^{\circ}C$ and $25^{\circ}C$ to assess the change of the microbial diversity according to the storage temperature and period. Yeast counts increased until day 3 of storage and decreased thereafter. General and lactic acid bacterial counts continuously increased during storage. The data indicated that the control of growth of microorganisms, particularly general bacteria and lactic acid bacteria (LAB), is essential. Total acid levels started to decrease in the makgeolli stored at $4^{\circ}C$, and increased from day 6 of storage in the makgeolli stored at $25^{\circ}C$. The increase of total acid in the non-refrigerated condition greatly affected the quality of makgeolli. In both the fresh makgeolli samples stored at $4^{\circ}C$ and $25^{\circ}C$, yeast (Saccharomyces cerevisiae) and molds (Aspergillus tubingensis, Candida glaebosa, and Aspergillus niger) were noted. Denaturing gradient gel electrophoresis (DGGE) band patterns were almost constant regardless of the storage period. As for bacteria, Lactobacillus crustorum, L. brevis, and Microlaena stipoides were found in the makgeolli stored at $4^{\circ}C$, and L. crustorum, Lactobacillus sp., L. plantarum, L. brevis, L. rhamnosus, and L. similis were found in the makgeolli stored at $25^{\circ}C$. In particular, in the makgeolli stored at $25^{\circ}C$, L. crustorum and L. plantarum presented dark bands and were identified as the primary microorganisms that affected spoilage of fresh makgeolli.

Physicochemical Properties of Cheonggukjang with Fermentation Period for a Variety of Soybean Cultivars (콩 품종별 발효기간에 따른 청국장의 이화학적 특성)

  • Baek, Ji Eun;Choi, Yoon Hee;Song, Jin;Yun, Hong Tai;Choi, Hye Sun;Park, Shin Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.4
    • /
    • pp.742-750
    • /
    • 2014
  • This study was done in order to investigate the changes in quality of Cheonggukjang for soybean cultivars during fermentation. Cheonggukjang of 14 cultivars that were inoculated with Bacillus subtilis 15893 was produced, and, then, it was measured for hardness, proximate composition, amino nitrogen, enzyme activity, and total aerobic bacteria counts. In a raw bean, the highest hardness value was 16,975 g from Sunyu. In a steaming bean, Jangwon had the highest hardness value and the lowest aerobic bacteria counts of forty-eight hours fermented Cheonggukjang. Saedanbaek, whose protein contents was highest in raw bean, was also highest in Cheonggukjang. The amino nitrogen content of twenty-four hours fermented Cheonggukjang was highest in Saeol and Sunyu while forty-eight hours fermented Cheonggukjang was highest in Singi, Daol, and Milyang 231. In the protease activity, Saedanbaek had the highest and total aerobic bacteria count that were either increased or held as time went on ; twenty-four hours fermented Cheonggukjang was highest in Milyang 231 and Keunol while forty-eight hours fermented Cheonggukjang was highest in Chunsang.

Effects of Cordyceps militaris Mycelia on Fibrolytic Enzyme Activities and Microbial Populations In vitro

  • Yeo, Joon-Mo;Lee, Shin-Ja;Shin, Sung-Hwan;Lee, Sung-Hoon;Ha, Jong-Kyu;Kim, Wan-Young;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • An experiment was conducted to examine the effects of Cordyceps militaris mycelia on microbial populations and fibrolytic enzyme activities in vitro. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the supplementation of C. militaris mycelia linearly increased the number of total viable and celluloytic bacteria; maximum responses were seen with 0.25 g/L supplementation of C. militaris mycelia. The addition of C. militaris mycelia above the level of 0.20 g/L significantly (p<0.01) increased the number of total and cellulolytic bacteria compared with the control. On the other hand, the response of fungal counts to the supplementation of C. militaris mycelia showed a linear decrease; the lowest response was seen with 0.30 g/L supplementation of C. militaris mycelia. It would seem that C. militaris mycelia possess a strong negative effect on rumen fungi since the lowest level of C. militaris mycelia supplementation markedly decreased fungal counts. Carboxylmethyl cellulase activities were linearly increased by the addition of C. militaris mycelia except at 3 and 9 h incubation times. At all incubation times, the supplementation of C. militaris mycelia linearly increased the activities of xylanase and avicelase. In conclusion, the supplementation of C. militaris mycelia to the culture of mixed rumen microorganisms showed a positive effect on cellulolytic bacteria and cellulolytic enzyme activities but a negative effect on fungi.

Effects of Kimchi on Stomach and Colon Health of Helicobacter pylori-Infected Volunteers

  • Kil, Jeung-Ha;Jung, Keun-Ok;Lee, Hyo-Sun;Hwang, In-Kyung;Kim, Yun-Jin;Park, Kun-Young
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.2
    • /
    • pp.161-166
    • /
    • 2004
  • The effects of kimchis intake on Helicobacter pylori infection in the stomach, the counts of lactic acid bacteria in the large intestine, and bacterial enzymes ($\beta$-glucosidase, $\beta$-glucuronidase) and pH in feces were examined. A total of 20 participants (age range 34 ∼ 57) were assessed for H. pylori infection status by Be urea breath test. Fourteen participants were eliminated because they were H. pylori-negative. This study consisted of 4 consecutive phase, each of which lasted 4 weeks. Three hundred grams of kimchi were administered to H. pylori-infected subjects during the kimchi phase, followed by 4 weeks of control phase. During the control phase, subjects consumed 60 g of kimchi, the minimum amount in their customary diets. All participants were found to be H. pylori-positive during all experimental periods. During the kimchi phase, delta over baseline (DOB) level was lower than during the control phase, although significant difference between the kimchi and control phases were not found (p=0.9439). However, the counts of Lactobacillus sp. and Leuconostoc sp. significantly (p < 0.0005) increased during the kimchi phase. $\beta$-Glucosidase and $\beta$-glucuronidase activities and pH were significantly decreased by kimchi intake compared to control (p=0.000l). These results suggested that kimchi consumption did not show any therapeutic effect on H. pylori in the stomach. However, kimchi seemed to be a good food for colon health, since it increased the beneficial bacteria such as lactobacillus and decreased toxic enzyme ($\beta$-glucosidase and $\beta$-glucuronidase) activity and pH.

Optimization of Lactic Acid Fermentation of Prickly Pear Extract

  • Son, Min-Jeong;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • Lactic acid fermentation of prickly pear extract (PPE) was performed by Lactobacillus rhamnosus LS, Lactobacillus bulgaricus, and Lactobacillus brevis. The PPE was pasteurized to eliminate indigenous microorganisms as well as to dissolve the partially insoluble pulp. The PPE fermented without yeast extract by L. rhamnosus LS exhibited 0.57% acidity and 3.5${\times}$10$^{8}$ CFU/mL bacteria count. With the addition of 0.2% edible yeast extract the PPE fermented by L. rhamnosus LS exhibited 1.15% acidity,2.7${\times}$10$^{9}$ CFU/mL bacteria count and 95.0% retention of red color. When 5% fructose syrup was added, the PPE fermented by L. rhamnosus LS had 1.09% acidity, 6.5${\times}$10$^{8}$ CFU/mL, and 97.7% retention of red color. With 1∼3% (w/v) concentrations of starter, the PPE fermented by L. bulgaricus and L. brevis showed 0.97% and 0.65% acidities, respectively. The viable cell counts from L. rhamnosus LS fermentation were higher compared with those of other LAB. During cold storage at 4$^{\circ}C$, the viable cell count was well maintained for 3 weeks, but then rapidly decreased. The red pigment was highly stable during cold storage for 4 weeks. The pasteurized PPE fortified with 5% fructose syrup, 0.2% yeast extract, and 0.05% CaCO$_3$ was successfully fermented by inoculating with 3% LAB and incubating at 3$0^{\circ}C$ for 2 days. Both viable cell counts and the red color of the fermented PPE were well maintained during cold storage for 3 weeks.

Quality and storage characteristics of yogurt containing Lacobacillus sakei ALI033 and cinnamon ethanol extract

  • Choi, Yu Jin;Jin, Hee Yeon;Yang, Hee Sun;Lee, Sang Cheon;Huh, Chang Ki
    • Journal of Animal Science and Technology
    • /
    • v.58 no.4
    • /
    • pp.16.1-16.7
    • /
    • 2016
  • Background: This study was conducted to examine the quality and storage characteristics of yogurt containing antifungal-active lactic acid bacteria (ALH, Lacobacillus sakei ALI033) isolated from kimchi and cinnamon ethanol extract. The starter was used for culture inoculation (1.0 % commercial starter culture YF-L812 and ALH). Results: The antifungal activity of cinnamon extracts was observed in treatments with either cinnamon ethanol extracts or cinnamon methanol extracts. Changes in fermented milk made with ALH and cinnamon extract during fermentation at $40^{\circ}C$ were as follows. The pH was 4.6 after only 6 h of fermentation. Titratable acidity values were maintained at 0.8 % in all treatment groups. Viable cell counts were maintained at $4{\times}10^9CFU/mL$ in all groups except for 1.00 % cinnamon treatment. Sensory evaluations of fermented milk sample made with ALH and 0.05 % cinnamon ethanol extract were the highest. Changes in fermented milk made with ALH and cinnamon ethanol extract during storage at $4^{\circ}C$ for 28 days were as follows. In fermented milk containing ALH and cinnamon ethanol extracts, the changes in pH and titratable acidity were moderate and smaller compared with those of the control. Viable cell counts were maintained within a proper range of $10^8CFU/mL$. Conclusions: The results of this study suggest that the overgrowth of fermentation strains or post acidification during storage can be effectively delayed, thereby maintaining the storage quality of yogurt products in a stable way, using cinnamon ethanol extract, which exhibits excellent antifungal and antibacterial activity, in combination with lactic acid bacteria isolated from kimchi.