• Title/Summary/Keyword: backward test scenario

Search Result 2, Processing Time 0.017 seconds

A Test Scenario Generation Technique based on Task Information for Interaction Testing among Android Components (안드로이드 컴포넌트 상호작용 테스팅을 위한 태스크 정보기반 테스트 시나리오 생성 기법)

  • Baek, Tae-San;Lee, Woo Jin
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.595-600
    • /
    • 2017
  • Android applications are composed of one or more components. The components within an application or several applications may interact with each other primarily through intents. Such interactions may cause security and reliability issues such as broadcast theft, activity hijacking, and intent spoofing. These problems need to be resolved through testing techniques using various interaction test scenarios before an application gets launched. However, with the existing test scenario generation approach, some infeasible test scenarios may be generated since they do not consider the re-execution order based on activity setting when pressing the back button. This paper proposes a test case generation technique which removes infeasible interaction paths by utilizing the activity stack information.

Design of Lateral Controller for Automatic Valet Parking and Its Performance Analysis with Respect to Vehicle Types (자동 발렛 파킹을 위한 횡방향 제어기 설계 및 차종변화에 대한 제어 성능 분석)

  • Choi, Heejae;Song, Bongsob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1051-1058
    • /
    • 2012
  • The unified lateral control algorithm for automatic valet parking for various types of vehicles is presented and its feasibility is shown experimentally via field tests for the given parking scenario. First, a trajectory generation algorithm for forward driving and backward multi-step parking maneuvers is developed. Then, with consideration of different types of vehicles and operating conditions, a kinematic vehicle model is used and validated using field test data. Using the nonlinear vehicle model, the lateral controller is designed based on dynamic surface control. Finally the proposed lateral control law is validated via hardware-in-the-loop simulations for different types of vehicles and experimentally using a test vehicle through field tests.