• Title/Summary/Keyword: background surface

Search Result 1,080, Processing Time 0.03 seconds

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect - (천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -)

  • Kim, Mijin;Kim, Jhoon;Yoon, Jongmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.627-639
    • /
    • 2014
  • Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.

Extraction of Characteristics of Concrete Surface Cracks

  • Ahn, Sang-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.126-130
    • /
    • 2007
  • This paper proposes a method that automatically extracts characteristics of cracks such as length, thickness and direction, etc., from a concrete surface image with image processing techniques. This paper, first, uses the closing morphologic operation to adjust the effect of light extending over the whole concrete surface image. After applying the high-pass filtering operation to sharpen boundaries of cracks, we classify intensity values of the image into 8 groups and remove intensity values belong to the highest frequency group among them for the removal of background. Then, we binarize the preprocessed image. The auxiliary lines used to measure cracks of concrete surface are removed from the binarized image with position information extracted by the histogram operation. Then, cracks broken by the removal of background are extended to reconstruct an original crack with the $5{\times}5$ masking operation. We remove unnecessary information by applying three types of noise removal operations successively and extracts areas of cracks from the binarized image. At last, the opening morphologic operation is applied to compensate extracted cracks and characteristics of cracks are measured on the compensated ones. Experiments using real images of concrete surface showed that the proposed method extracts cracks well and precisely measures characteristics of cracks.

Quantification of Heterogenous Background Fractures in Bedrocks of Gyeongju LILW Disposal Site (경주 방폐장의 불균질 배경 단열의 정량화)

  • Cho, Hyunjin;Cheong, Jae-Yeol;Lim, Doo-hyun;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.463-474
    • /
    • 2017
  • Heterogeneous background fractures of granite and sedimentary rocks in Gyeongju LILW (low-intermediate level radioactive waste) facility area have been characterized quantitatively by analyzing fracture parameters (orientation, intensity, and size). Surface geological survey, electrical resistivity survey, and acoustic televiewer log data were used to characterize the heterogeneity of background fractures. Bootstrap method was applied to represent spatial anisotropy of variably oriented background fractures in the study area. As a result, the fracture intensity was correlated to the inverse distance from the faults weighted by nearest fault size and the mean value of electrical resistivity and the average volumetric fracture intensity ($P_{32}$) was estimated as $3.1m^2/m^3$. Size (or equivalent radius) of the background fractures ranged from 1.5 m to 86 m and followed to power-law distribution based on the fractal property of fracture size, using fractures measured on underground silos and identified surface faults.

Thermal Signature Characteristics of Clothed Human Considering Thermoregulation Effects (체온 조절 작용을 고려한 의복 착용 시의 인체 열상신호 특성 분석)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • Survivability of soldiers has been greatly threatened by the development of thermal observation device(TOD). Therefore, infrared, especially thermal, stealth technology is applied to combat suit to avoid detection from TOD. In this study, prior to the thermal camouflage performance evaluation of combat suit, thermal signature characteristic from clothed the human body was analyzed considering the realistic condition for human surface temperature compared to that from unclothed human body. To get the realistic surface temperature distribution of human, thermoregulation and multi-layer skin structure model is applied to the human model. Based on temperature distribution, surface diffuse radiance in thermal range is calculated and by assuming the background conditions, contrast radiance intensity(CRI) characteristic of human body is analyzed. By wearing clothing, the CRI between background and human body became reduced in low emissive background but in high emissive background, the contrast is much more prominent. Therefore, this issue should be considered in design process of thermal camouflage combat suit.

The Effect of Antenna Pattern Measurement According to Radio Wave Environment on Data Quality of HF Ocean Radar (전파환경에 따른 안테나패턴 측정(APM) 결과가 고주파 해양레이더의 자료 품질에 미치는 영향)

  • Jae Yeob, Kim;Dawoon, Jung;Seok, Lee;Kyu-Min, Song
    • Ocean and Polar Research
    • /
    • v.44 no.4
    • /
    • pp.287-296
    • /
    • 2022
  • High-frequency (HF) radar measures sea surface currents from the radio waves transmitted and received by antenna on land. Since the data quality of HF radar measurements sensitively depend on the radio wave environment around antenna, Antenna Pattern Measurements (APM) plays an important role in evaluating the accuracy of measured surface currents. In this study, APM was performed by selecting the times when the background noise level around antenna was high and low, and radial data were generated by applying the ideal pattern and measured pattern. The measured antenna pattern for each case was verified with the current velocity data collected by drifters. The radial velocity to which the ideal pattern was applied was not affected by the background noise level around antenna. However, the radial velocity obtained with APM in the period of high background noise was significantly lower in quality than the radial velocity in a low noise environment. It is recomended that APM be carried out in consideration of the radio wave environment around antenna, and that the applied result be compared and verified with the current velocity measurements by drifters. If it is difficult to re-measure APM, we suggest using radial velocity in generating total vector with the ideal pattern through comparative verification, rather than poorly measured patterns, for better data quality.

Effects of Surface Color and Morphology on the Mar Behaviors of Urethane-Acrylate Coatings (우레탄 아크릴 코팅 소재의 표면 색상 및 모폴로지가 긁힘 거동에 미치는 영향)

  • Jung, Won-Young;Weon, Jong-Il
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • The effects of surface color and morphology on the mar behaviors of urethane-acrylate coated surfaces were examined. The superiority of mar resistance was observed in the order of white, red and black-colored samples. This can be explained by a contrast effect. In other words, in case of black colored sample, it takes place the defuse reflection of the incident light on the damaged region where mar damage exerts, leading to whitening phenomenon. Therefore, the damaged region is easily recognized by contrasting the black background. On the other hand, it is difficult for the white-colored sample to perceive the mar-damaged area by the white background acting as protecting coloration. As the gloss of urethane-acrylate coated surface increases, it is observed that there is an increase in the number of carbonyl (-C=O) function group, amount of ethylene and silica. The enhancements of surface rigidity by adding the silica particles and formation of carbonyl function groups by the surface oxidation lead to the increase in mar resistance, while the increase of polyethylene wax is responsible for the improved gloss and smooth-faced surface. Based on the above findings, technical approaches leading the improvement of mar resistance of the urethane-acrylate coated surface are discussed.

Analysis of NO2 over the Korean Peninsula from Ozone Monitoring Instrument Satellite Measurements (위성 (OMI)을 활용한 한반도 지역 NO2 분석)

  • Kim, Deok-Rae;Choi, Won-Jun;Lee, Joon-Suk;Kim, Seung-Yeon;Hong, Jun-Suk;Song, Chang-Keun;Lee, Jae-Bum;Hong, You-Deog;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.3
    • /
    • pp.249-260
    • /
    • 2012
  • Monitoring of climate change and atmospheric environment by satellite measurements has been increased in recent years. In this study, nitrogen dioxide ($NO_2$) measurements from Ozone Monitoring Instrument (OMI) were compared with surface measurements over the Korean peninsula. $NO_2$ from OMI measurements showed high values and also showed seasonal variations such as high concentration in winter and low in summer over metropolitan areas while $NO_2$ concentration at national background station was low and did not clearly show seasonal variations. Surface measurements showed similar temporal and spatial variations to those of satellite measurement. The comparison between satellite measurements and surface measurements showed that the correlation between them was higher in urban area (r=0.64 at Seoul and r=0.63 at Daegu) than in national background stations (r=0.37 at Jeju) because the concentration in urban area was relatively high so that the variation of $NO_2$ concentration could be detected better than at national background stations by satellite. Satellite can effectively measure the emission and transport of pollutants with no limitations in spatial coverage.

Estimation of Surface Color with Use of Subjective Feeling: On the Influence of Contrast by Complementary Color

  • Sakamoto, Kazuyoshi;Wada, Mitsuyoshi;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.5 no.2
    • /
    • pp.73-78
    • /
    • 2002
  • The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. subject gazed the monochrome or the unique color, which was tailed target rotor. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling for the target color presented, the estimation of the unique color was cai\ulcornerlied out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law, The color difference saturated In the increase of area of background with the ratio more than 2:1.

  • PDF

Estimation of surface color with use of subjective feeling: On the influence of contrast by complementary color

  • Sakamoto, Kazuyoshi;Wada, Mitsuyoshi;Min, Byung-Chan
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.261-265
    • /
    • 2002
  • The unique colors of paper, that is, blue, green, red, and yellow were used in the estimation of color from the subjective feeling. The monochrome with unique color or the unique color surrounded with the background color was presented. Subject gazed the monochrome or the unique color, which was called target color. The target and background color were the complementary color each other. The various ratios of the area of gazed color and background were taken. Subject answered the level of subjective feeling consisted of pair of adjective items for unique color presented. With the use of the subjective feeling fer the target color presented, the estimation of the unique color was carried out due to Fuzzy theory and neural networks. The results of color difference between unique color presented and the estimated color gave very small value for the case without background, while the results of the case with background color depended on the ratio of area of presented color and background color till the ration of 2:1, The relation showed the Kirschman's law. The color difference saturated in the increase of area of background with the ratio more than 2:1.

  • PDF

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon (화천 지진관측소 지표와 시추공의 배경잡음 특성 비교)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.