• Title/Summary/Keyword: backbone NMR assignment

Search Result 31, Processing Time 0.022 seconds

1H, 15N and 13C resonance assignment and secondary structure prediction of ss-DNA binding protein 12RNP2 precursor, HP0827 from Helicobacter pylori

  • Jang, Sun-Bok;Ma, Chao;Chandan, Pathak Chinar;Kim, Do-Hee;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.69-79
    • /
    • 2011
  • HP0827 has two RNP motif which is a very common protein domain involved in recognition of a wide range of ssRNA/DNA.We acquired 3D NMR spectra of HP0827 which shows well dispersed and homogeneous signals which allows us to assign 98% of all $^1H_N$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C$=O resonances and 90% of all sidechain resonances. The sequence-specific backbone resonance assignment of HP0827 can be used to gain deeper insights into the nucleic acids binding specificity of HP0827 in the future study. Here, we report secondary structure prediction of HP0827 derived from NMR data. Additionally, ssRNA/DNA binding assay studies was also conducted. This study might provide a clue for exact function of HP0827 based on structure and sequence.

Backbone 1H, 15N, and 13C Resonances Assignment and Secondary Structure Prediction of SAV0506 from Staphylococcus aureus

  • Lee, In Gyun;Lee, Ki-Young;Kim, Ji-Hun;Chae, Susanna;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.54-58
    • /
    • 2013
  • SAV0506 is an 87 residue hypothetical protein from Staphylococcus aureus strain Mu50 and also predicted to have similar function to ribosome associated heat shock protein, Hsp 15. Hsp15 is thought to be involved in the repair mechanism of erroneously produced 50S ribosome subunit. In this report, we present the sequence specific backbone resonance assignment of SAV0506. About 82.5% of all resonances could be assigned unambiguously. By analyzing deviations of the $C{\alpha}$ and $C{\beta}$ chemical shift values, we could predict the secondary structure of SAV0506. This study is an essential step towards the structural characterization of SAV0506.

Backbone 1H, 15N and 13C Resonance Assignment and Secondary Structure Prediction of HP0062 (O24902_HELPY) from Helicobacter pylori

  • Jang, Sun-Bok;Ma, Chao;Park, Sung-Jean;Kwon, Ae-Ran;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.2
    • /
    • pp.117-125
    • /
    • 2009
  • HP0062 is an 86 residue hypothetical protein from Helicobacter pylori strain 26695. HP0062 was identified ESAT-6/WXG100 superfamily protein based on structure and sequence alignment and also contains leucine zipper domain sequence. Here, we report the sequence-specific backbone resonance assignment of HP0062. About 97.7% of all $^1H_N,\;^{15}N,\;^{13}C_{\alpha},\;^{13}C_{\beta}\;and\;^{13}C=O$ resonances were assigned unambiguously. We could predict the secondary structure of HP0062 by analyzing the deviation of the $^{13}C_{alpha}\;and\;^{13}C_{\beta}$ chemical shifts from their respective random coil values. Secondary structure prediction shows that HP0062 consist of two ${\alpha}$-helices. This study is a prerequisite for determining the solution structure of HP0062 and can be used for the study on interaction between HP0062 and DNA and other Helicobacter pylori proteins.

Backbone 1H, 15N, and 13C Resonance Assignment of HP1242 from Helicobacter pylori

  • Kang, Su-Jin;Park, Sung-Jean;Jung, Seo-Jeong;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.591-594
    • /
    • 2005
  • One of the small proteins from Helicobacter pylori, HP1242, was investigated by the solution nuclear magnetic resonance (NMR) spectroscopy. HP1242 is known as a 76-residue conserved hypothetical protein and its function cannot be identified based on sequence homology. Here, the results of the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of the HP1242 are reported using double- and triple-resonance techniques. About 95% of all of the $^1HN$, $^{15}N$, $^{13}CO$, $^{13}C{\alpha}$, and $^{13}C{\beta}$ resonances that cover 75 non- Proline residues of the 76 residues are clarified through sequential- and specific- assignments. In addition, three helical regions were clearly identified on the basis of the resonance assignments.

Backbone assignments of 1H, 15N and 13C resonances and secondary structure prediction of MRA1997 from Mycobacterium tuberculosis H37Rv

  • Kim, Hyojung;Kim, Yena;Lee, Ki-Young;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • MRA1997 is a 76-residue conserved hypothetical protein of Mycobacterium tuberculosis H37Ra, one of the most pathogenic bacterial species and the causative agent of tuberculosis. In this study, the sequence-specific backbone resonance assignment of MRA1997 was performed using NMR spectroscopy. Approximately 88.3% of the total resonances could be unambiguously assigned. By analyzing deviations of the $C{\alpha}$ and $C{\beta}$ chemical shift values, the secondary structure of MRA1997 was calculated. The result revealed that secondary structure of MRA 1997 consists of one ${\alpha}$-helix and five ${\beta}$-sheets. Our structural study will be a footstone towards the characterization of the three-dimensional structure of MRA1997.

Backbone 1H, 15N, and 13C Resonance Assignments and Secondary Structure of a Novel Protein OGL-20PT-358 from Hyperthermophile Thermococcus thioreducens sp. nov.

  • Wilson, Randall C.;Hughes, Ronny C.;Curto, Ernest V.;Ng, Joseph D.;Twigg, Pamela D.
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.437-440
    • /
    • 2007
  • $OGL-20P^T$-358 is a novel 66 amino acid residue protein from the hyperthermophile Thermococcus thioreducens sp. nov., strain $OGL-20P^T$, which was collected from the wall of the hydrothermal black smoker in the Rainbow Vent along the mid-Atlantic ridge. This protein, which has no detectable sequence homology with proteins or domains of known function, has a calculated pI of 4.76 and a molecular mass of 8.2 kDa. We report here the backbone $^1H$, $^{15}N$, and $^{13}C$ resonance assignments of $OGL-20P^T$-358. Assignments are 97.5% (316/324) complete. Chemical shift index was used to determine the secondary structure of the protein, which appears to consist of primarily ${\alpha}$-helical regions. This work is the foundation for future studies to determine the three-dimensional solution structure of the protein.

Backbone 1H, 15N, and 13C Resonance Assignments and Secondary-Structure of Conserved Hypothetical Protein HP0894 from Helicobacter pylori

  • Han, Kyung-Doo;Park, Sung-Jean;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.442-445
    • /
    • 2005
  • HP0894 (SwissProt/TrEMBL ID O25554) is an 88-residue conserved hypothetical protein from Helicobacter pylori strain 26695 with a calculated pI of 8.5 and a molecular weight of 10.38 kDa. Proteins with sequence similarity to HP0894 exist in Vibrio choierae, Enterococcus faecalis, Campylobacter jejuni, Streptococcus pneumoniae, Haemophilus influenzae, Escherichia coli O157, etc. Here we report the sequence-specific backbone resonance assignments of HP0894. About 97.5% (418/429) of the HN, N, CO, $C{\alpha}$, $C{\beta}$ resonances of the 88 residues of HP0894 were assigned. On the basis of these assignments, three helical regions and four strand regions were identified using the CSI program. This study is a prerequisite for calculating the solution structure of HP0894, and studying its interaction with its substrates, if any, and/or with other proteins.

Mainchain NMR Assignments and secondary structure prediction of the C-terminal domain of BldD, a developmental transcriptional regulator from Streptomyces coelicolor A3(2)

  • Kim, Jeong-Mok;Won, Hyung-Sik;Kang, Sa-Ouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • BldD, a developmental transcription factor from Streptomyces coelicolor, is a homodimeric, DNA-binding protein with 167 amino acids in each subunit. Each monomer consists of two structurally distinct domains, the N-terminal domain (BldD-NTD) responsible for DNA-binding and dimerization and the C-terminal domain (BldD-CTD). In contrast to the BldD-NTD, of which crystal structure has been solved, the BldD-CTD has been characterized neither in structure nor in function. Thus, in terms of structural genomics, structural study of the BldD-CTD has been conducted in solution, and in the present work, mainchain NMR assignments of the recombinant BldD-CTD (residues 80-167 of BldD) could be achieved by a series of heteronuclear multidimensional NMR experiments on a [$^{13}C/^{15}N$]-enriched protein sample. Finally, the secondary structure prediction by CSI and TALOS+ analysis using the assigned chemical shifts data identified a ${\beta}-{\alpha}-{\alpha}-{\beta}-{\alpha}-{\alpha}-{\alpha}$ topology of the domain. The results will provide the most fundamental data for more detailed approach to the atomic structure of the BldD-CTD, which would be essential for entire understanding of the molecular function of BldD.

Oxidation-induced conformational change of Hsp33, monitored by NMR

  • Lee, Yoo-Sup;Kim, Ji-Hoon;Seo, Min-Duk;Ryu, Kyoung-Seok;Kim, Eun-Hee;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.99-105
    • /
    • 2015
  • Hsp33 is a prokaryotic molecular chaperon that exerts a holdase activity upon response to an oxidative stress at raised temperature. In particular, intramolecular disulfide bond formation between the four conserved cysteines that bind a zinc ion in reduced state is known to be critically associated with the redox sensing. Here we report the backbone NMR assignment results of the half-oxidized Hsp33, where only two of the four cysteines form an intramolecular disulfide bond. Almost all of the resolved peaks could be unambiguously assigned, although the total assignments extent reached just about 50%. Majority of the missing assignments could be attributed to a significant spectral collapse, largely due to the oxidation-induced unfolding of the C-terminal redox-switch domain. These results support two previous suggestions: conformational change in the first oxidation step is localized mainly in the C-terminal zinc-binding domain, and the half-oxidized form would be still inactive. However, some additional regions appeared to be potentially changed from the reduced state, which suggest that the half-oxidized conformation would be an intermediate state that is more labile to heat and/or further oxidation.

Chmical Shift Variation of Bovine Angiogenin Upon Binding with Phosphate ions

  • Baek, Sun-Hee;Kang, Dong-Il;Lee, Jee-Young;Shin, Hang-Cheol;Kim, Yang-Mee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.155-162
    • /
    • 2006
  • Angiogenin is unique among angiogenic molecules in that it is a member of the pancreatic ribonuclease superfamily and, in fact, is a ribonucleolytic enzyme. Its enzymatic activity is extremely weak compared to that of the digestive RNases but is critical for its capacity to induce neovascularization. In this study, we completed the backbone resonance assignment of bovine angiogenin using triple resonance NMR experiments of $^{15}N\;and/or\;^{13}C$ isotope labeled protein and investigated the chemical shift variation upon binding with inhibitor phosphate ion and determine the phosphate binding site.

  • PDF