• Title/Summary/Keyword: back-stepping control approach

Search Result 4, Processing Time 0.018 seconds

A LATERAL CONTROL ALGORITHM FOE ROLL-TO-ROLL WEB SYSTEM BASED ON BACK-STEPPING APPROACH

  • Choi, Kyung-Huyn;Thanh, Tran Trung;Ko, Jeong-Beom;Kim, Su-Jin;Doh, Yang-Hoi;Kim, Dong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1091-1097
    • /
    • 2008
  • Roll-to-roll based manufacturing plays an important role in producing devices at high speed with lower production cost in printed electronics and publishing industry. Web lateral control is one of the most important factors in improving the quality of product and contributes a considerable point in making devices at micrometer-level accuracy. In recent years, most algorithms proposed for web lateral control base on the Shelton‘s model for designing the feedback control system using the PI controller. Experimental results showed that the existing models do not fully describe the characteristics of the lateral dynamics for some typical operating conditions and so result in poor control algorithms. In this paper, a new lateral control algorithm is proposed for web lateral control system based on back-stepping approach. The outcome of this study proves the reliability throughout simulation results in Matlab/Simulink and comparison with the algorithms based on the existing results.

  • PDF

Synthesis and Experimental Implementation of DSP Based Backstepping Control of Positioning Systems

  • Chang, Jie;Tan, Yaolong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • Novel nonlinear backstepping control with integrated adaptive control function is developed for high-performance positioning control systems. The proposed schemes are synthesized by a systematic approach and implemented based on a modern low-cost DSP controller, TMS320C32. A baseline backstepping control scheme is derived first, and is then extended to include a nonlinear adaptive control against the system parameter changes and load variations. The backstepping control utilizes Lyapunov function to guarantee the convergence of the position tracking error. The final control algorithm is a convenient in the implementation of a practical 32-bit DSP controller. The new control system can achieve superior performance over the conventional nested PI controllers, with improved position tracking, control bandwidth, and robustness against external disturbances, which is demonstrated by experimental results.

Modeling and Energy Management Strategy in Energetic Macroscopic Representation for a Fuel Cell Hybrid Electric Vehicle

  • Dinh, To Xuan;Thuy, Le Khac;Tien, Nguyen Thanh;Dang, Tri Dung;Ho, Cong Minh;Truong, Hoai Vu Anh;Dao, Hoang Vu;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.80-90
    • /
    • 2019
  • Fuel cell hybrid electric vehicle is an attractive solution to reduce pollutants, such as noise and carbon dioxide emission. This study presents an approach for energy management and control algorithm based on energetic macroscopic representation for a fuel cell hybrid electric vehicle that is powered by proton exchange membrane fuel cell, battery and supercapacitor. First, the detailed model of the fuel cell hybrid electric vehicle, including fuel cell, battery, supercapacitor, DC-DC converters and powertrain system, are built on the energetic macroscopic representation. Next, the power management strategy was applied to manage the energy among the three power sources. Moreover, the control scheme that was based on back-stepping sliding mode control and inversed-model control techniques were deduced. Simulation tests that used a worldwide harmonized light vehicle test procedure standard driving cycle showed the effectiveness of the proposed control method.