• Title/Summary/Keyword: back-off algorithm

Search Result 69, Processing Time 0.027 seconds

A Linear Back-off Algorithm for IEEE 802.11 Wireless LAN

  • Cho Chi-woo;Son Jeong-ho;Pak Jin-suk;Son Jae-min;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.317-320
    • /
    • 2004
  • The exponential back-off algorithm doubles the back-off size after each collision without considering network traffic status, which causes degradation of system performance. In this paper, we propose a linear random back-off mechanism which dynamically selects the back-off window size based on the channel status which includes the number of active stations and collisions to significantly increase the protocol capacity. We present an analytical model for the saturated throughput of our linear random back-off algorithm. Simulation results show that performance can be substantially enhanced if binary exponential back-off algorithm is replaced by a linear back- off algorithm.

  • PDF

Proposal of Modified Distributed coordination function (DCF) using Virtual Back-off (Virtual Back-off를 사용한 변형된 DCF 알고리즘 제안)

  • 송경희;김태환;박동선
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.49-52
    • /
    • 2003
  • IEEE 802.11 MAC uses a distributed coordination function (DCF) known as carrier sense multiple access with collision avoidance (CSMA/CA) for medium access. Random back-off algorithm helps to avoid the collision. This paper proposes virtual back-off and modified back-off algorithm for reduce a waiting time by back-off and reduce the collision. The modified DCF is consisted of these two algorithms. We expect to reduce the average waiting time of each transmission by using the modified DCF algorithm.

  • PDF

A Deterministic Back-off Algorithm for Wireless Networks

  • Jin Jung-woo;Kim Kyung-Jun;Kim Dong-hwan;Lee Ho-seung;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.310-312
    • /
    • 2004
  • Binary Exponential Back-off (BEB) scheme is widely adopted in both wire and wireless networks for collision resolution. The BEB suffers from several performance drawbacks including long packet delay and low utilization since it doubles the back-off size after each collision. In addition, operation of the BEB algorithm may lead to the last-come-first-serve result among competing users and the BEB is further unstable for every arrival rate greater than 0 due to its random access property[1,2]. In this paper, we propose a deterministic back-off algorithm to reduce contention interval as much as possible for accessing the channel without collision in the back-off process. Simulation results show that our scheme offers a higher throughput as well as a lower packet transfer delay than the BEB by taking advantage of its lower collision ratio in saturation state.

  • PDF

Modified Back-Off Algorithm to Improve Fairness for Slotted ALOHA Sensor Networks (슬롯화된 ALOHA 센서 네트워크에서 공평성 향상을 위한 변형된 백오프 알고리즘)

  • Lee, Jong-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • In this paper, I propose an modified back-off algorithm to improve the fairness for slotted ALOHA sensor networks. In hierarchical networks, the performance degradation of a specific node can cause degradation of the overall network performance in case the data transmitted by lower nodes is needed to be synthesized and processed by an upper node. Therefore it is important to ensure the fairness of transmission performance to all nodes. The proposed scheme choose a back-off time of a node considering the previous transmission results as well as the current transmission result. Moreover a node that failed to transmit consecutively is given gradually shorter back-off time but a node that is success to transmit consecutively is given gradually longer back-off time. Through simulations, I compare and analyze the performance of the proposed scheme with the binary exponential back-off algorithm(BEB). The results show that the proposed scheme reduces the throughput slightly compared to BEB but improves the fairness significantly.

An Adaptive Back-off Algorithm in Beacon-Enabled LR-WPAN (비콘 기반 저속 WPAN에서의 적응적 백오프 알고리즘)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.8
    • /
    • pp.735-742
    • /
    • 2016
  • The Low-Rate WPAN is a short range wireless networking technology characterized by low-rate, low-power, low complexity and low-cost. The LR-WPAN controls wireless channel access among network devices based on the contention-based CSMA/CA algorithm. Therefore, frame collisions may take place at any time, leading to the severe degradation of network performance. This paper proposes a new algorithm that changes back-off periods adaptively in the CSMA/CA process depending on network conditions, resulting in the reduction of frame collisions. Throughout extensive simulations, it turns out that varying the back-off periods dynamically shows better performance than maintaining the fixed back-off periods.

Geographical Time Back-off Routing Protocol for Wireless Sensor Networks (무선 센서 네트워크에서 쥐치 정보의 시간차를 이용한 에너지 효율적인 라우팅 프로토콜)

  • Kim, Jae-Hyun;Sim, In-Bo;Kim, Hong;Lee, Jai-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5B
    • /
    • pp.247-256
    • /
    • 2007
  • In this paper, we propose Geographical Back-off Routing (Geo-Back Routing) protocol for wireless sensor networks. Geo-Back uses the positions of nodes, a packet's destination and a optimal back-off time to make the packet forwarding decisions using only source and destination's location information without information about neighbor nodes' location or the number of one hop neighbor nodes. Under the frequent topology changes in WSNs, the proposed protocol can find optimal next hop location quickly without broadcast algorithm for update. In our analysis, Geo-Back's scalability and better performance is demonstrated on densely deployed wireless sensor networks.

An Enhanced Message Priority Mechanism in IEEE 802.11p Based Vehicular Networks

  • Liu, Chang;Chung, Sang-Hwa;Jeong, Han-You;Jung, Ik-Joo
    • Journal of Information Processing Systems
    • /
    • v.11 no.3
    • /
    • pp.465-482
    • /
    • 2015
  • IEEE 802.11p is a standard MAC protocol for wireless access in vehicular environments (WAVEs). If a packet collision happens when a safety message is sent out, IEEE 802.11p chooses a random back-off counter value in a fixed-size contention window. However, depending on the random choice of back-off counter value, it is still possible that less important messages are sent out first while more important messages are delayed longer until sent out. In this paper, we present a new scheme for safety message scheduling, called the enhanced message priority mechanism (EMPM). It consists of the following two components: the benefit-value algorithm, which calculates the priority of the messages depending on the speed, deceleration, and message lifetime; and the back-off counter selection algorithm, which chooses the non-uniform back-off counter value in order to reduce the collision probability and to enhance the throughput of the highly beneficial messages. Numerical results show that the EMPM can significantly improve the throughput and delay of messages with high benefits when compared with existing MAC protocols. Consequently, the EMPM can provide better QoS support for the more important and urgent messages.

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

A Study on Backoff Algorithm for QoS in IEEE 802.11 Wireless LAN (IEEE 802.11 Wireless LAN에서의 QoS 지원을 위한 Backoff Algorithm에 관한 연구)

  • 조재용;김석호;류동관;곽경섭
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.12
    • /
    • pp.116-124
    • /
    • 2003
  • According to the convenience and efficiency, IEEE 802.11 WLAN(Wireless LAN) has became rapidly wide-spread on the market. However, QoS support is needed for various multimedia service. In this paper, we consider both MAC method of IEEE 802.11 and IEEE 802.11e and Traffic Category differentiated service by QoS support method. In addition, we study currently existing back-off algorithms in view of comparative analysis. As a result we propose a new back-off algorithm called Collision Rate Based-EDCF. The proposed back-off algorithm confirms the performance by computer simulations in terms of Throughput, and QoS support.

MDA-SMAC: An Energy-Efficient Improved SMAC Protocol for Wireless Sensor Networks

  • Xu, Donghong;Wang, Ke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4754-4773
    • /
    • 2018
  • In sensor medium access control (SMAC) protocol, sensor nodes can only access the channel in the scheduling and listening period. However, this fixed working method may generate data latency and high conflict. To solve those problems, scheduling duty in the original SMAC protocol is divided into multiple small scheduling duties (micro duty MD). By applying different micro-dispersed contention channel, sensor nodes can reduce the collision probability of the data and thereby save energy. Based on the given micro-duty, this paper presents an adaptive duty cycle (DC) and back-off algorithm, aiming at detecting the fixed duty cycle in SMAC protocol. According to the given buffer queue length, sensor nodes dynamically change the duty cycle. In the context of low duty cycle and low flow, fair binary exponential back-off (F-BEB) algorithm is applied to reduce data latency. In the context of high duty cycle and high flow, capture avoidance binary exponential back-off (CA-BEB) algorithm is used to further reduce the conflict probability for saving energy consumption. Based on the above two contexts, we propose an improved SMAC protocol, micro duty adaptive SMAC protocol (MDA-SMAC). Comparing the performance between MDA-SMAC protocol and SMAC protocol on the NS-2 simulation platform, the results show that, MDA-SMAC protocol performs better in terms of energy consumption, latency and effective throughput than SMAC protocol, especially in the condition of more crowded network traffic and more sensor nodes.