• 제목/요약/키워드: back-EMF estimation

검색결과 73건 처리시간 0.025초

브러시리스 직류전동기의 안전성을 고려한 Hall Sensor 신호 추정 알고리즘 설계 (The Estimation Algorithm Design of Hall Sensor Signal Considering Safety of BLDC Motor)

  • 윤용호
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1894-1899
    • /
    • 2016
  • In this paper, because the position sensor represents the important factor in BLDC (Brushless DC) motor drives, BLDC motor is necessary that the three Hall-sensors evenly be distributed around the stator circumference in case of the 3 phase motor. The Hall-sensor is set up in this motor to detect the main flux from the rotor. So the output signal from Hall-sensor is used to drive IGBT to control the stator winding current. However, in case of breakdown Hall sensor, we research that the estimation algorithm of Hall sensor signal to detect rotor position and for the speed feedback signals with BLDC motor whose six stator and two rotor designed. In addition, this paper presents a sensorless speed control of BLDC Motor using terminal voltage of the one phase. Rotor position information is extracted by indirectly sensing the back EMF from only one of the three terminal voltages for a three-phase BLDC motor.

MRAS를 이용한 유도 전동기의 시정수 보상을 갖는 속도 센서리스 벡터제어 (Sensorless Vector Control System with Compensated Time Constant of Induction Motor Using a MRAS)

  • 임태윤;김동희;황돈하;김민회
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.540-543
    • /
    • 1999
  • This paper describes a speed sensorless algorithm for vector control system with compensated stator resistance and rotor time constant of induction motor using a model reference adaptive system(MRAS). The system are composed of two MRAC, one is a rotor speed estimation and a stator resistor identification by back-EMF observer, other is used to identify rotor time constant by magnetizing current observer, so that the estimation can be cover a very low speed range with a robust control. The suggest control strategy and estimation method have been validated by simulation study. In the simulation using Matlab/Simulik, the proposed speed sensorless vector control system are shown to operate very well in spite of variable rotor time constant and load fluctuation.

  • PDF

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법 (A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed)

  • 박철우;권우현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권1호
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Sensorless Control of PMSM by a Four-Switch Inverter with Compensation of Voltage Distortion and Adjustment of Position Estimation Gain

  • Kim, Byeong-Han;Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.100-109
    • /
    • 2017
  • This paper proposes performance improvement schemes for sensorless PMSM control drive using a four-switch three-phase inverter (so-called B4 inverter). In the proposed scheme, the back-EMF estimation-based sensorless control algorithm is used to control the brushless PMSM without position sensors. In order to have stable operation, this paper presents a gain adjustment scheme that compensates the reduction of stable sensorless operation range as long as the rotor speed increases. In B4 topology, the center point of dc-link capacitors is connected to 3-phase load, and it is prone to have the load current distortion. Hence, to mitigate this problem, a distortion compensation scheme by modifying voltage commands using measured dc-link potentials is proposed in this paper. The validity of the proposed method is evaluated by simulations and experiments.

Brushless DC Motor의 제어 파라미터 추정과 안정도향상 (The Parameter Estimation and Stability Improvement of the Brushless DC Motor)

  • 김철진;임태빈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권3호
    • /
    • pp.131-138
    • /
    • 1999
  • Generally, the digital controller has many advantages such as high precision, robustness to electrical noise, capability of flexible programming and fast response to the load variation. In this study, we have established proper mathematical equivalent model of Brushless DC (BLDC) motor and estimated the motor parameter by means of the back-emf measurement as being the step input to the controlled target BLDC motor. And the validity of proposed estimation method is confirmed by the test result of step response. As well, we have designed the reasonable digital controller as a consequence of the root locus method which is obtained from the open-loop transfer function of BLDC motor with hall sensor, and the determination of control gain for variable speed control. Here, revised Ziegler-Nichols tuning method is applied for the proper digital gain establishment, and the system stability is verified by the frequency domain analysis with Bode-plot and experimentation.

  • PDF

새로운 보상 파라미터를 가지는 적응제어 기반 영구자석 동기전동기의 센서리스 속도제어 (Sensorless Speed Control of PMSM Based on Novel Adaptive Control with Compensated Parameters)

  • 남기현;권영안
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.956-962
    • /
    • 2013
  • Recently, sensorless controls, which eliminate position and speed sensor in a permanent magnet synchronous motor drive, have been much studied. Most sensorless control algorithms are based on the back-EMF and speed estimations which are obtained from the voltage equations. Therefore, the sensorless control performance is largely affected by the parameter errors of a motor. This paper investigates a novel adaptive control with the parameter error compensation for the speed sensorless control of a permanent magnet synchronous motor. The proposed parameter estimation is obtained from the d-axis current error between the real and estimated currents. The proposed algorithm is verified through the simulation and experimentation.

Improvement on Sensorless Vector Control Performance of PMSM with Sliding Mode Observer

  • Wibowo, Wahyu Kunto;Jeong, Seok-Kwon;Jung, Young-Mi
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.129-136
    • /
    • 2014
  • This paper proposes improvement on sensorless vector control performance of a permanent magnet synchronous motor (PMSM) with sliding mode observer. An adaptive observer gain and second order cascade low-pass filter (LPF) were used to improve the estimation accuracy of the rotor position and speed. The adaptive observer gain was applied to suppress the chattering intensity and obtained by using the Lyapunov's stability criterion. The second order cascade LPF was designed for the system to escalate the filtering performance of the back-emf estimation. Furthermore, genetic algorithm was used to optimize the system PI controller's performance. Simulation results showed the effectiveness of the suggested improvement strategy. Moreover, the strategy was useful for the sensorless vector control of PMSM to operate on the low-speed area.

순시무효전력을 이용하여 추정속도를 보상한 영구자석 동기전동기의 센세리스 속도 제어 (A Sensorless Speed Control of a Permanent Magnet Synchronous Motor that the Estimated Speed is Compensated by using an Instantaneous Reactive Power)

  • 최양광;김영석;전병호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권11호
    • /
    • pp.577-585
    • /
    • 2003
  • This paper proposes a new speed sensorless control method of a permanent magnet synchronous motor using an instantaneous reactive power. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimation error, the estimated speed is compensated by using an instantaneous reactive power. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.