• 제목/요약/키워드: back propagation 신경망 회로

검색결과 99건 처리시간 0.022초

퍼지 신경 회로망을 이용한 패턴 분류기의 설계 (Design of the Pattern Classifier using Fuzzy Neural Network)

  • 김문환;이호재;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2573-2575
    • /
    • 2003
  • In this paper, we discuss a fuzzy neural network classifier with immune algorithm. The fuzzy neural network classifier is constructed with the fuzzy classifier and the neural network classifier based on fuzzy rules. To maximize performance of classifier, the immune algorithm and the back propagation algorithm are used. For the generalized classification ability, the simulation results from the iris data demonstrate superiority of the proposed classifier in comparison with other classifier.

  • PDF

신경회로망을 이용한 유도전동기의 속도 센서리스 방식에 대한 비교 (Comparison of Different Schemes for Speed Sensorless Control of Induction Motor Drives by Neural Network)

  • 국윤상;김윤호;최원범
    • 전력전자학회논문지
    • /
    • 제5권2호
    • /
    • pp.131-139
    • /
    • 2000
  • 일반적으로 시스템 인식과 제어에 이용하는 다층 신경회로망은 기존의 역전파 알고리즘을 이용한다. 그러나 결선강도에 대한 오차의 기울기를 구하는 방법이기 때문에 국부적 최소점에 빠지기 쉽고, 수렴속도가 매우 늦으며 초기 결선강도 값들이나 학습계수에 민감하게 반응한다. 이와 같은 단점을 개선하기 위하여 확장된 칼만 필터링 기법을 역전파 알고리즘에 결합하였으나 계산상의 복잡성 때문에 망의 크기가 증가하면 실제 적용할 수 없다. 최근 신경회로망을 선형과 비선형 구간으로 구분하고 칼만 필터링 기법을 도입하여 수렴속도를 빠르게 하고 초기 결선강도 값에 크게 영향을 받지 않도록 개선하였으나, 여전히 은닉층의 선형 오차값을 역전파 알고리즘에 의해서 계산하기 때문에 학습계수에 민감하다는 단점이 있다. 본 논문에서는 위에서 언급한 기존의 신경회로망 알고리즘의 문제점을 개선하기 위하여 은닉층의 목표값을 최적기법에 의하여 직접계산하고 각각의 결선강도 값은 반복최소 자승법으로 온라인 학습하는 알고리즘을 제안하고 이들 신경회로망 알고리즘과 비교하고자 한다. 여러 가지 시뮬레이션과 실험을 통하여 제안된 방법이 초기 결선강도에 크게 영향을 받지 않으며, 기존의 학습계수 선정에 따른 문제점을 해결함으로써 신경회로망 모델에 기초한 실시간 제어기 설계에 응용할 수 있도록 하였다. 또한, 유도전동기의 속도추정과 제어에 적용하여 좋은 결과를 보였다.

  • PDF

다중 판별자를 가지는 동적 삼차원 뉴로 시스템 (A Dynamic Three Dimensional Neuro System with Multi-Discriminator)

  • 김성진;이동형;이수동
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.585-594
    • /
    • 2007
  • 오류역전파 방법을 이용하는 신경망들은 패턴들의 학습시간이 매우 오래 걸리고 또한 추가학습과 반복학습의 한계를 가지며, 이런 단점을 보완할 수 있는 이진신경망(Binary Neural Network, BNN)이 Aleksander에 의해 제안되었다. 그러나 BNN도 반복학습에 있어서는 단점을 가지고 있으며, 일반화 패턴을 추출하기 어렵다. 본 논문에서는 BNN의 구조를 개선하여 반복학습과 추가학습이 가능할 뿐 아니라, 특징점들까지 추출할 수 있는 다중 판별자를 가지는 삼차원 뉴로 시스템을 제안한다. 제안된 모델은 기존의 BNN을 기반으로 하여 만들어진 이차원 특징을 가지는 Single Layer Network(SLN)에 귀환회로가 추가되어 특징점들을 누적할 수 있는 삼차원 신경망이다. 학습을 통해 누적된 정보는 판별자의 각 신경세포에 임계치를 조정함으로써 일반화 패턴을 추출할 수 있다. 그리고 생성된 일반화 패턴을 인식에 재사용함으로써 반복학습의 효율성을 높였다. 최종 판정 단계에서는 Maximum Response Detector(MRD)를 이용하였다. 본 논문에서 제안한 시스템을 평가하기 위하여 NIST에서 제공하는 숫자 자료를 이용하였으며, 99.3%의 인식률을 얻었다.

인공 신경 회로망을 이용한 화학공정의 이상진단 시스템 (A fault diagnostic system for a chemical process using artificial neural network)

  • 최병민;윤여홍;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.131-134
    • /
    • 1990
  • A back-propagation neural network based system for a fault diagnosis of a chemical process is developed. Training data are acquired from FCD(Fault-Consequence Digraph) model. To improve the resolution of a diagnosis, the system is decomposed into 6 subsystems and the training data are composed of 0, 1 and intermediate values. The feasibility of this approach is tested through case studies in a real plant, a naphtha furnace, which has been used to develop a knowledge based expert system, OASYS (Operation Aiding expert SYStem).

  • PDF

다채널 뇌파의 웨이블릿 계수와 신경망을 이용한 정신분열증의 판별 (Classification of Schizophrenia Using an ANN and Wavelet Coefficients of Multichannel EEG)

  • 정주영;박일용;강병조;조진호;김명남
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권2호
    • /
    • pp.99-106
    • /
    • 2003
  • 본 논문에서는 정신질환 진단을 위하여 뇌파신호를 판별하는 방법을 제안하였다. 정신질환의 한 종류인 정신분열증 환자의 뇌파와 정상인의 뇌파를 분류하기 위하여 제안한 방법에서는 기본적으로 웨이블릿 변환과 인공 신경망을 이용하였다. 뇌파 신호에 웨이블릿 변환을 적용하여 각각 알파. 베타. 세타 그리고 델타파에 해당하는 주파수 대역의 웨이블릿 계수를 구한 다음. 각각의 주파수 대역에 대한 웨이블릿 계수들의 크기 평균 및 분산들을 인공 신경망의 입력 데이터로 이용하였다. 인공 신경망은 2개의 은닉층을 갖는 4층의 피드포워드 회로망 구조를 가지며 학습에는 역전파 학습 알고리듬을 이용하였다. 정신분열증의 판별시스템은 19 채널의 뇌파신호에 대응하는 19개의 인공신경망으로 구성되었고 정상인과 정신분열증 환자에 대하여 각각 100%와 86.67%의 정확도를 보여주었다.

신경망의 노드 가지치기를 위한 유전 알고리즘 (Genetic Algorithm for Node P겨ning of Neural Networks)

  • 허기수;오일석
    • 전자공학회논문지CI
    • /
    • 제46권2호
    • /
    • pp.65-74
    • /
    • 2009
  • 신경망의 구조를 최적화하기 위해서는 노드 또는 연결을 잘라내는 가지치기 방법과 노드를 추가해 나가는 구조 증가 방법이 있다. 이 논문은 신경망의 구조 최적화를 위해 가지치기 방법을 사용하며, 최적의 노드 가지치기를 찾기 위해 유전 알고리즘을 사용한다. 기존 연구에서는 입력층과 은닉층의 노드를 따로 최적화 대상으로 삼았다 우리는 두 층의 노드를 하나의 염색체에 표현하여 동시 최적화를 꾀하였다. 자식은 부모의 가중치를 상속받는다 학습을 위해서는 기존의 오류 역전파 알고리즘을 사용한다. 실험은 UCI Machine Learning Repository에서 제공한 다양한 데이터를 사용하였다. 실험 결과 신경망 노드 가지치기 비율이 평균 $8{\sim}25%$에서 좋은 성능을 얻을 수 있었다. 또한 다른 가지치기 및 구조 증가 알고리즘과의 교차검증에 대한 t-검정 결과 그들에 비해 우수한 성능을 보였다.

새로운 신경회로망 구조를 이용한 로봇 매니퓰레이터의 적응 제어 방식 (Adaptive Control Method of Robot Manipulators using a New Neural Network)

  • 정경권;김인;이승현;이현관;엄기환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1999년도 추계종합학술대회
    • /
    • pp.210-213
    • /
    • 1999
  • 본 논문에서는 로봇 매니퓰레이터 제어를 위해 새로운 신경회로망을 제안한다. 제안한 신경회로망구조는 은닉층과 출력층의 출력이 피드백 층을 거쳐 다시 은닉층과 출력층으로 피드백되는 구조이다. 피드백 층은 한번의 시간 지연을 갖는다. 제안한 신경회로망의 학습은 일반적인 오차 역전파 알고리즘을 사용한다. 로봇 매니퓰레이터를 대상으로 시뮬레이션과 실험을 통해서 제안한 신경회로망 구조의 유용성을 확인한다.

  • PDF

신경망 회로를 이용한 연삭가공의 트러블 검지(II) (Monitoring Systems of a Grinding Trouble Utilizing Neural Networks(2nd Report))

  • 곽재섭;김건희;하만경;송지복;김희술
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.57-63
    • /
    • 1996
  • Monitoring of grinding troble occurring during the process is classified into the quantitative data which depends upon a sensor and the qualitative knowledge which relies upon an empirical knowledge. Since grinding operation is highly related with a large amount of functional parameters, it is actually deficulty in copying wiht the grinding troubles through the process. To cope with grinding trouble, it is an effective monitoring systems when occurring the grinding process. The use of neural networks is an effective method of detection and/or monitroing on the grinding trouble. In this paper, four parameters which are derived from the AE(Acoustic Emission) signatures are identified, and grinding monitoring system utilized a back propagation learning algorithm of PDP neural networks is presented.

  • PDF

신경회로망을 이용한 스마트 무인기용 가스터빈 엔진의 성능진단에 관한 연구 (A Study on Performance Diagnostic of Smart UAV Gas Turbine Engine using Neural Network)

  • 공창덕;기자영;이창호;이승현
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.213-217
    • /
    • 2006
  • PW206C 터보 축 엔진을 위해 신경회로망을 이용한 지능형 성능 진단 프로그램이 제안되었다. 이 엔진은 항공우주연구원에서 개발 중에 있는 틸트 로터 타입 스마트 무인기의 추진시스템으로 선정되었다. 1개의 은닉층, 입력층, 출력층을 가지는 BPN(Back Propagation Network)이 신경회로망을 훈련시키기 위해 이용되었다. 입력층은 7개의 뉴런을 가지는데 SHP, MF, P2, T2, P4, T4 및 T5와 같은 측정파라미터이며 출력층은 6개의 뉴런으로 구성되어 있으며 각각은 압축기, 압축기 터빈, 동력 터빈의 유량 함수 및 효율이다. 신경망을 훈련하고 테스트하기 위한 데이터 베이스는 가스터빈 성능모사 프로그램을 이용하여 구성하였다. 훈련된 신경망을 PW206C 터보 축 엔진의 진단에 적용한 결과 제안된 진단 알고리즘이 압축기 오염과 압축기 터빈의 침식과 같은 단일 손상을 탐지하는데 유용함을 확인하였다.

  • PDF

신경망을 이용한 자율이동로봇의 이동 경로 추종 (Moving Path Following of Autonomous Mobile Robot using Neural Network)

  • 주기세
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.585-594
    • /
    • 2000
  • 생산현장이나 불확실한 환경에서 자율이동로봇의 정확한 경로 추종은 고전적 제어 알고리즘인 경우에 많은 단점을 갖고 있다. 본 논문에서는 오류 역전파 알고리즘을 기반으로 한 신경망을 이용하여 이동로봇이 바닥 위에 설치된 선을 따라갈 수 있도록 하였다. 로봇에 부착된 3 개의 센서들로부터 인식된 정보뿐만 아니라 센서들이 인식하지 못하는 영역에서도 10등분된 세밀한 정보가 입력패턴으로 학습되기 때문에 센서들이 인식하지 못하는 영역에서도 이동로봇은 라인을 따라 원활하게 이동한다. 로봇이 목적지까지 이동하는데 걸리는 시간이 단축되고 라인과의 오차를 최소화하는 효과를 가져온다. 제안된 신경회로망 제어기의 효과를 검증하기 위하여 이동로봇의 이동 각의 변화에 따른 두개의 모터의 속도 변화가 컴퓨터로 시뮬레이션 된다.

  • PDF