• Title/Summary/Keyword: bacillus

Search Result 5,163, Processing Time 0.038 seconds

Isolation and Identification of Lactic Acid Bacteria with Probiotic Activities from Kimchi and Their Fermentation Properties in Milk (전통 김치로부터 Probiotic 유산균의 분리 및 우유 발효 특성)

  • Lim, Young-Soon;Kim, JiYoun;Kang, HyeonCheol
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.115-128
    • /
    • 2019
  • Lactic acid bacteria obtained from traditional Kimchi were selected on the basis of their caseinolytic activity and lactose usability and examined for availability as a starter in probiotic activity. Thirty-two strains were selected as lactic acid producing bacteria in BCP agar, and two strains (KC23 and KF26) with more than 90% resistance for both acid and bile salts were selected. The two strains were identified as L. plantarum (KC23) and L. paracasei (KF26) by API 50 CHL system and 16S rRNA sequence analysis. L. plantarum (KC23) was finally selected based on its biochemical characteristics for lactose and raffinose usability. Free tyrosine content increased rapidly in 10% skimmed milk medium, from $24.1{\mu}g/mL$ after 8 h to $43.9{\mu}g/mL$ after 16 h. Additionally, the caseinolytic clear zone of 12 mm of L. plantarum (KC23) was greater than the 9 mm zone of commercial L. acidophilus CSLA. The bacterium exhibited mesophilic growth and yielded $8.9{\times}10^8CFU/mL$ when incubated at $37^{\circ}C$ for 12 h at pH 4.25. Moreover, L. plantarum KC23 exhibited antibacterial activity as it formed a clear zone of 8-13 mm for the 5 pathogens. Adherent activity was 2.23 fold higher than that of LGG. The acidity of 10% skimmed milk fermented for 12 h was 0.74%.

Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics (복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석)

  • Rhee, Chaeyoung;Kim, Haham;Emmanuel, S. Aalfin;Kim, Hong-Gi;Won, Seonghun;Bae, Jinho;Bai, Sungchul C.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water quality. For the analysis, 80 juvenile fish (average weight, $25.7{\pm}7.6g$; average length, $15.2{\pm}1.7cm$) were fed a basal diet containing a commercial microbial product CES-AQ1 (CES; $1{\times}10^9\;CFU/kg$ diet) in an RAS for 8 weeks. Weight gain, the specific growth rate, feed efficiency, and protein efficiency ratio of the fish fed the CES diet in the RAS were 1.5~2.5 times higher than those of fish fed the basal diet alone, or the basal diet containing oxytetracycline (OTC), yeast plus bacterium, or Bacillus subtilis in a still water system. There was no significant difference in the pathogen challenge test between fish fed the OTC diet and fish fed the CES diet in the RAS, suggesting the CES-AQ1 probiotic used in the RAS as a potential replacement for antibiotics. The RAS biofilter maintained the highest microbial diversity and appeared to harbor microbial communities with ammonium oxidation, denitrification, and fish pathogen suppression functions. Ammonia, which is hazardous to fish, was significantly decreased to < 0.5 mg/L in 19 days, indicating the effectiveness of probiotic supplementation to maintain good water quality in RAS. These results suggest that the intestinal microbial communities of fish are stabilized by a probiotic-containing diet (CES) and that bioaugmentation with probiotics may be an eco-friendly and economical supplement for aquaculture of olive flounder, promoting both good water quality and fish health in an RAS.

Microbial Qualities of Parasites and Foodborne Pathogens in Ready to Eat (RTE) Fresh-cut Produces at the On/Offline Markets (즉석섭취 신선편의 절단 과일 및 채소의 원충류 및 병원성 식중독균의 미생물학적 품질 실태 연구)

  • Jeon, Ji Hye;Roh, Jun Hye;Lee, Chae Lim;Kim, Geun Hyang;Lee, Jeong Yeon;Yoon, Ki Sun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • Recently, the purchase of fresh-cut produce and meal kits has increased. Ready-to-eat (RTE) fresh-cut products have potentially hazard of cross-contamination of various microorganisms in the processes of peeling, slicing, dicing, and shredding. There are frequent cases of protozoa food poisoning, such as Cyclospora and Cryptosporidium, caused by fresh-cut products. The objective of the study is to investigate the microbiological qualities of various types of RTE fresh-cut products in the domestic on/offline markets. RTE fresh-cut fruits cup (n=100), fresh-cut vegetables (n=50), and vegetables in meal kits (Vietnamese spring rolls and white radish rolls kits, n=50) were seasonally analyzed. The contamination levels of hygienic indicator organisms, yeast and mold (YM), and foodborne pathogens (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7) were monitored. Overall, the lowest microbiological qualities of meal kits vegetables were observed, followed by RTE fresh-cut fruits cup and fresh-cut vegetables. Contamination levels of total aerobic bacteria, coliforms, and YM in meal kits vegetables were 5.91, 3.90, and 4.71 logs CFU/g, respectively. From the qualitative analysis, 6 out of 200 RTE fresh-cut products (3%) returned positive result for S. aureus. From the quantitative analysis, the contamination levels of S. aureus in purple cabbage from a meal-kit and fresh-cut pineapple were below the acceptable limit (100 CFU/g). Staphylococcus enterotoxin seg and sei genes were detected in RTE fresh-cut celery and red cabbage from meal-kits, respectively. S. aureus contamination must be carefully controlled during the manufacturing processes of RTE fresh-cut products. Neither Cyclospora cayetanensis nor Cryptosporidium parvum was detected in the samples of RTE fresh-cut products and vegetables from meal-kits from the Korean retail markets.

Effect of Sterilization Conditions on Microbial Reduction in Cleaning Tools (살균 조건이 세척 도구 중 미생물 저감화에 미치는 영향)

  • Im, Ji-Yu;Kim, Chae-Young;Kim, Eun-yeong;Kim, Min-jin;Kim, Jung-Beom
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.310-316
    • /
    • 2022
  • In this study, we compared the microbial reduction effects of drying, hot water, and microwave sterilization in scourers and dishcloths to suggest a most suitable sterilization method. Three scourer types (silver, copper, and mesh) were used, and three dishcloth types (silver, bamboo, and cotton) were used. Drying time dependent reduction in Escherichia coli was high in silver and copper scourers, but minimal bacterial reduction was obtained against Bacillus cereus in all scourers and dishcloths. In scourers, E. coli was not detected after ≥30 s of hot water sterilization at 77℃, and B. cereus was not detected after ≥60 s of hot water sterilization at 100℃. In dishcloths, E. coli was not detected after hot water sterilization at 77℃ for ≥30 s, but B. cereus was detected after hot water sterilization at 100℃ for ≥60 s. In scourers, E. coli was not detected after microwave sterilization at 700 W for 3 min, but B. cereus was detected. In dishcloths, E. coli was not detected after microwave sterilization with 700 W for ≥1 min, but B. cereus was detected in the cotton dishcloth even after sterilization for 3 min. In conclusion, the use of antimicrobial scourers (silver and copper) and dishcloths (silver and bamboo) are not sufficient to reduce the microbial contamination. The guideline provided by the Ministry of Food and Drug Safety suggesting dishcloth sterilization via hot water at 100℃ for 30 s was also found to be insufficient. Based on our research, we suggest that the most effective methods of microbial management are submerging scourers in hot water at 100℃ for ≥1 min, and sterilizing dishcloths for ≥3 min using a 700 W microwave.

Studies on Selenium-fortified Functional Hanwoo-Beef by Utilizing Spent Mushroom Composts I. Studies on the Manufacture of Fermented Feeds by Using Spent Mushroom Composts and Fortification of Organic Selenium (버섯폐배지를 이용한 셀레늄강화 기능성 한우고기 생산에 관한 연구 I. 버섯폐배지 이용 발효사료제조와 유기셀레늄 강화에 관한 연구)

  • Lee, Jang-Hyung;Kim, Wan-Young
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.6 no.1
    • /
    • pp.102-115
    • /
    • 2004
  • Main objectives of this study were to increase digestibilities of indigestible ingredients in spent mushroom composts (SMC) consisted of sawdust mainly as well as to fortify conversion of inorganic Se present in SMC to organic Se via fermentable microbial actions. Experimental feeds were designed to contain the increasing level of selenium (0.06ppm, 0.54ppm, 1.26ppm and 1.86ppm) in combination with SMCs of Se-enriched and non-Se mushrooms. Feeds were also fermented using commercial microbial feed additives (Sambae, Ltd., Korea) comprised Saccharomyces, Bacillus, Aspergillus, Streptococcus and Actinomycetes before feeding trial for Hanwoo (Korean native cattle). Those were fermented for 0, 12, 24, and 48 hrs. Initial pH was linearly increased as Se concentration increases or the proportion of SMC of Se-enriched mushroom increased (p<0.0001). pH values of fermented feeds (0.54ppm, 1.26ppm and 1.86ppm) containing SMC of Se-enriched mushroom were not different since 12 hrs of fermentation time and their pH was significantly lowered compared to control group. The increasing level of Se concentration in fermented feeds showed significant differences in organic and inorganic Se contents and proportion of organic Se among treatments. As a SMC proportion of Se-enriched mushrooms in the fermented feed was increased, organic Se proportion was significantly decreased (p<0.0001). The control treatment (0.06ppm) comprising the non-Se SMC only was estimated of the organic Se to be 100% and the treatment groups containing the increasing level of Se were estimated of organic Se to be approximately 70%.

Isolation and Characterization of Lactic acid bacteria Leuconostoc mesenteroides DB3 from Camellia japonica Flower (백꽃으로부터 분리한 Leuconostoc mesenteroides DB3의 특성)

  • Sam Woong Kim;Da Hye Shin;Sang Wan Gal;Kyu Ho Bang;Da Som Kim;Won-Jae Chi
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.915-922
    • /
    • 2023
  • Lactic acid bacteria (LAB) are widespread in a variety of environments including fermented dairy products, gastroinstetinal and urogenital tracts of human and animals, plant, soil and water. Leuconostoc mesenteroides DB3 was detected by the strongest antibacterial activities among 24 Leuconostoc strains isolated from Camellia japonica flowers. Acid tolerance of L. mesenteroides DB3 existed up to pH 2.5, but the resistance did not show at pH 2.0, which relatively excellent acid resistance existed. Bile acid tolerance was very stable within the test range to 1.2%. L. mesenteroides DB3 exhibited the optimal growth at 30℃, and showed a slight slow growth when compared with L. mesenteroides KCTC3505, which reached a stationary phase at 18 hr. The pH was changed along with the growth curve, but was maintained above pH 3.98. L. mesenteroides DB3 had higher initial antibacterial activities when compared to L. mesenteroides KCTC3505, but it showed similar activities with the standard strain after the latter part of the logarithmic growth phase. Although lactic acid production in L. mesenteroides DB3 was induced by lower amount in the initial part to the standard strain, it was exhibited by similar amounts after the late logarithmic growth phase. Muicin adhesion of L. mesenteroides DB-3 maintained superior to L. mesenteroides KCTC3505. Both strains showed excellent emulsification ability for kerosene. In summary, we evaluate that L. mesenteroides DB-3 has a high potential for application as probiotics owing to its excellent antibacterial activity, acid resistance, bile acid resistance, and muicin adhesion.

Effects of Microbial Fermentation on the Antioxidant Activities of Protaetia brevitarsis Larvae (미생물 발효가 흰점박이꽃무지(Protaetia brevitarsis) 유충의 항산화 활성에 미치는 영향)

  • Han Bi Kim;Hye Soo Kim;Soo Jeong Cho
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.1052-1061
    • /
    • 2023
  • This study was carried out to evaluate the effect of fermentation by B. subtilis (BPLE), L. brevis (LPLE), S. cerevisiae (SPLE) and C. militaris (CPLE) on the antioxidant activity of Protaetia brevitarsis larvae fed with mushroom substrates (king oyster mushroom). The total polyphenol content of Protaetia brevitarsis larvae (PLE), BPLE, LPLE, SPLE and CPLE were 58.07±0.67, 83.33±0.98, 79.21±1.32, 61.02±0.87 and 57.90±1.02 mg GAEs/extract g, respectively. The flavonoid contents of the PLE, BPLE, LPLE, SPLE and CPLE were 17.35±1.57, 19.49±0.95, 16.90±1.57, 18.12±0.95 and 16.99±0.95 mg QEs/extract g, respectively. The DPPH radical scavenging activity showed no significant difference between the PLE, BPLE, LPLE, SPLE and CPLE at a concentration of 0.2 mg/ml. However, at a concentration of 0.4 mg/ml or more, the DPPH radical scavenging activity of the BPLE and LPLE was higher than that of the PLE. The reducing power of the BPLE and LPLE was also higher than that of the PLE, and more than twice as high at a concentration of 0.8 mg/ml or more. The ORAC value of the BPLE (79.77±0.82 uM TEs/extract g) was higher than that of the PLE (61.34±0.97 uM TEs/extract g). A WST-1 assay of the RAW 264.7 cells indicated that the PLE, BPLE, LPLE, SPLE and CPLE showed no cytotoxicity.

Investigation of Microbial Contamination in the Raw Materials of Meal Kits (간편조리세트 원재료의 미생물 오염도 조사)

  • Hyun-Kyung Lee;Young-Sook Do;Min-Jung Park;Kyoung Suk Lim;Seo-In Oh;Jeong-Hwa Lim;Hyun-Soo Kim;Hyun-Kyung Ham;Yeo-Jung Kim;Myung-Jin Lee;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.2
    • /
    • pp.109-117
    • /
    • 2024
  • This study investigated the microbial contamination of agricultural, livestock, and marine ingredients in 55 meal kits distributed across Gyeonggi-do, South Korea. Of the 55 meal kits, 48 contained agricultural ingredients, 43 contained livestock ingredients, and 16 contained marine ingredients. The detection rate of the total aerobic bacteria in the agricultural, livestock, and marine products was 100%. The average numbers of the total aerobic bacteria were 6.57 log colony-forming units (CFU)/g in the agricultural products, 4.60 log CFU/g in the livestock products, and 5.47 log CFU/g in the marine products. The coliform detection rates in the agricultural, livestock, and marine products were 81.25%, 69.77%, and 43.75%, respectively. The average numbers of coliforms were 2.83 log CFU/g in the agricultural products, 1.34 log CFU/g in the livestock products, and 1.12 log CFU/g in the marine products. Escherichia coli was detected in 13 livestock products (30.23%), with levels ranging from 0.70 to 2.36 log CFU/g. Contrastingly, E. coli was detected in only one marine product (6.25%) and was not detected in any agricultural products. The detection rates of fungi in agricultural, livestock, and marine products were 97.92%, 93.02%, and 93.75%, respectively. The average numbers of fungi were 3.82 log CFU/g for the agricultural products, 2.92 log CFU/g for the livestock products, and 2.82 log CFU/g for the marine products. The isolation rates of foodborne pathogens from the agricultural, livestock, and marine products were 35.42%, 37.21%, and 31.25%, respectively. Forty-five foodborne pathogens of seven species, including Bacillus cereus and Salmonella spp., were isolated from the raw materials of the agricultural, livestock, and marine products in 55 meal kits. To prevent foodborne diseases caused by meal kits, it is necessary to focus on washing, heating, and preventing cross-contamination during cooking.

Characteristics of Leuconostoc spp. isolated from radish kimchi and its immune enhancement effect (무김치에서 분리한 Leuconostoc 속의 특성과 면역증강 효과)

  • Seoyeon Kwak;Seongeui Yoo;Jieon Park;Woosoo Jeong;Hee-Min Gwon;Soo-Hwan Yeo;So-Young Kim
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1082-1094
    • /
    • 2023
  • The purpose of this study was to examine the characteristics of Leuconostoc spp. isolated from radish kimchi and to investigate the potential for the use of functional ingredients by evaluating enzymatic characteristics, safety, and immune-enhancing effects among the isolates, including Lactobacillus rhamnosus ATCC53103 (LGG) as a control strain. All test strains exhibited β-glucosidase enzyme activity that releases β-1,4 sugar chain bonds. In addition, as a result of antibiotic resistance assay among the isolates, MIC values on 8 antibiotics were below compared to the EFSA standard, and hemolytic experiments confirmed that all showed gamma hemolysis without hemolytic ability. As a result of the antibacterial activity experiment, the Leu. mesenteroides K2-4 strain showed a higher activity than LGG against Bacillus cereus and Staphylococcus aureus. Additionally, the activity of the NF-kB/AP-1 transcription factor increased when the isolates were treated in macrophage RAW cells. These results were related to increasing the high mRNA expression levels on TNF-α and IL-6 by Leu. mesenteroides K2-4 strain to be treated at low concentration. Consequently, we suggest that it will be useful as a candidate for functional food ingredients.

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF