• Title/Summary/Keyword: ba-ji

Search Result 345, Processing Time 0.038 seconds

Brain Function During Recall of Anger Experience According to the Level of Trait Anger (분노 경험 회상시 특성 분노 수준에 따른 뇌 기능)

  • Eum, Young-Ji;Lee, Kyung Hwa;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.49-60
    • /
    • 2018
  • Trait anger is one of the psychological traits associated with experiences of anger. Individuals with high trait anger become angry easily at trivial events, and experience anger more frequently, intensely, and over a longer duration. This study aimed to investigate neural responses during experiences of anger, and identify the neural correlates of trait anger. Thirty five adults participated in the functional magnetic resonance (fMRI) experiment. They were scanned while they recalled an anger-inducing memory that was supposed to evoke an experience of anger. During the angry recall compared to the emotionally neutral recall, our participants showed greater neural activation in the right superior temporal gyrus (BA38), left inferior frontal gyrus (BA45), right thalamus, right insula (BA13), bilateral cuneus (BA17), and right cerebellum anterior lobe. The correlation analysis revealed that trait anger scores were positively associated with right insula activity during the angry recall. Individuals with higher trait anger were more likely to show greater activity in the right insula in response to past experiences of anger, as previously implicated in various studies of emotional processing. This finding suggests that trait anger may be an important factor in modulating anger-related brain activity.

Green Light-Emitting Phosphor, Ba2xCaMgSi2O8:Eux

  • Kim, Jeong-Seog;Piao, Ji-Zhe;Choi, Jin-Ho;Cheon, Chae-Il;Park, Joo-Suk
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.145-149
    • /
    • 2005
  • [ $Eu^{2+}$ ]-activated barium magnesium silicate phosphor, $(Ba,Ca)_{3}MgSi_{2}O_{8}:Eu_{x}$, has been known to emit blue-green light. In this study we report the manufacturing processes for producing either pure green or pure blue light-emitting phosphor from the same composition of $Ba_{2-x}Ca_{2}CaMgSi_{2}O_{8}:Eu_{x}$ (0 < x < 1) by controlling heat treatment conditions. Green light emitting phosphor of $Ba_{1.9}CaMgSi_{2}O_{8}:Eu_{0.1}$ can be produced under the sample preparation condition of highly reducing atmosphere of $23\%\;H_2/77\%\;N_2$, while blue or blue-green light emitting phosphor under reducing atmosphere of $5\~20\%\;H_2\;/\;95\~80\%$ N_2. The green light-emitting phosphors are prepared in two steps: firing at $800\~1000^{\circ}C$ for $2\~5$ h in air then at $1100\~1350^{\circ}C$ for 2-5 h under reducing atmo­sphere $23\%$ $H_2/77\%\;N_2$. The excitation spectrum of the green light-emitting phosphor shows a broadband of $300\~410$ nm. The emission spectrum has a maximum intensity at the wavelength of about 501 nm. The CIE value of green light emission is (0.162, 0.528). The pure blue light-emitting phosphors can be produced using the $Ba{2_x}CaMgSi_{2}O_{8}:Eu_{x}$ by introducing additional firing step at $1150\~1300^{\circ}C$ in air before the final reducing treatment. The XRD analysis shows that the green light-emitting phosphor mainly consisted of $Ba_{1.31}Ca_{0.69}SiO_{4}$ (JCPDS $\#$ 36-1449) and other minor phases i.e., $MgSiO_3$ (JCPDS $\#$ 22-0714) and $Ca_{2}BaMgSi_{2}O_{8}$ (JCPDS $\#$ 31-0128). The blue light-emitting phosphor mainly consisted of $Ca_{2}BaMgSi_{2}O_{8}$ phase.

Study on Characteristics and Preparation of Binderless BaX Granules for Separation of p-Xylene (파라자일렌 분리용 Binderless BaX 성형체의 합성 및 반응 특성에 관한 연구)

  • Jin, Jung-Hyun;Suh, Jeong-Kwon;Hong, Ji-Sook;Kim, Beum-Sik;Lee, Chang-Ha
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • In this study, binderless zeolite BaX granule, an effective adsorbent for the separation of p-xylene was made. This adsorbent which has a sufficient strength, high specific surface area and selectivity to p-xylene was prepared by various steps, such as granulation process, calcination, binderless treatment, ion-exchange, and activation. In the granulation, the concentration of colloidal silica solution was controlled in order to confirm the effect of $SiO_2$ contents after binderless treatment. As a result, we confirmed that the compressive strength of granule after binderless treatment was increasing with increasing proportion of $SiO_2$ in the granule. And then Na-ion in granule was exchanged with Ba-ion by successive batch ion-exchange process. And then prepared adsorbents were tested for p-xylene separation by batch adsorption at $90^{\circ}C$. As a results of batch adsortion test, we confirmed that prepared adsorbents have a high selectivity to p-xylene. Also, it could be conformed that the prepared binderless zeolite BaX has a sufficient compressive strength (0.450 kgf), high specific surface area $(647.57m^2/g)$, high crystallinity (98.5% compared with zeolite NaX powder), and selectivity to p-xylene.

A Study on the Non-Toxic Compound-based Multi-layered Radiation Shielding Sheet and Improvement of Properties (무독성 화합물 기반의 다층 구조 방사선 차폐 시트 개발과 특성 개선에 관한 연구)

  • Heo, Ye Ji;Yang, Seung u;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.149-155
    • /
    • 2020
  • Most of radiation protection clothing is made of lead with excellent radiation shielding because it has excellent process ability and economic efficiency and has a high atomic number. However, lead is classified as a hazardous heavy metal, and there is a risk of lead poisoning. Recently, research to replace lead has been actively conducted. In this study, a research on a shielding sheet with improved physical properties while maintaining the radiation shielding ability equivalent to that of conventional materials by mixing two materials that are harmless to the human body, such as BaSO4 and Bi2O3, and a silicone material binder Was performed. For comparison evaluation with the existing lead shielding sheet, the shielding rate was evaluated using a 40 degree shielding sheet having the highest porosity. As a result, it was analyzed that the shielding rate was superior to 9 % or more at the same thickness. In addition, as a result of studies to improve the physical properties of the shielding sheet, it was analyzed that the shielding sheet mixed with BaSO4/nylon/Bi2O3 was the best.

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).

A Study on the Synthesis and Properties of Environmental Friendly Pressure Sensitive Adhesive for Manufacturing Electronic Products (전자제품 제조용 친환경 점착제의 합성과 물성에 대한 연구)

  • Cho, Ur Ryong;Oh, Ji Hwan;Kim, Ji Hyun;Jung, Hyeon Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.12-16
    • /
    • 2016
  • Toluene-free pressure sensitive adhesives were synthesized by using butyl acrylate (BA), 2-hydroxy ethyl acrylate, methyl methacrylate, acrylic acid (AA) as monomers and ethyl acetate as a solvent. The polymerization recipes were designed by changing 1, 3, 5 part per hundreds monomer (phm) of AA content on the basis of 100 BA parts. Two crosslinking agents, ethyl glycol diglycidyl ether (EDGE) and isophorone diisocyanate (IPDI) were added to the synthesized polymers to increase adhesion due to crosslinking. In the measurement of properties, holding power, peel strength, and initial tackiness increased with AA content due to crosslinking between carboxyl group in AA and epoxy group in EDGE and isocyanate group in IPDI. In the comparison of two crosslinking agents, EDGE showed better in the three properties than IPDI by better reaction of epoxy group of EDGE to carboxyl group of AA.

Effect of Sintering Temperature on Structural and Dielectric Properties of (Ba0.54Sr0.36Ca0.10)TiO3 Thick Films

  • Noh, Hyun-Ji;Lee, Sung-Gap;Nam, Sung-Pill;Lee, Young-Hie
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.49-52
    • /
    • 2009
  • Barium strontium calcium titanate powders were prepared with the sol-gel method. Ferroelectric $(Ba_{0.54}Sr_{0.36}Ca_{0.1})TiO_3$(BSCT) thick films were fabricated by the screen-printing method on alumina substrate. Then we investigated the structural and dielectric properties of the BSCT thick films at different sintering temperatures. The thermal analysis showed that the BSCT polycrystalline perovskite phase formed at around $660^{\circ}C$. The X-ray diffraction analysis showed a cubic perovskite structure with no second phase present in all of the BSCT thick films. The average grain size and the thickness of the specimens sintered at $1450^{\circ}C$ were about $1.6{\mu}m$ and $45{\mu}m$, respectively. The relative dielectric constant increased and the dielectric loss decreased as the sintering temperature was increased; for BSCT thick films sintered at $1450^{\circ}C$ the values of the dielectric constant and the dielectric loss were 5641 and 0.4%, respectively, at 1 kHz.

Effect in Properties of Strength and Microstructure according to Change to Cystal Phase on $SiO_2-B_2O_3-RO$(CaO, BaO, SrO) System Glasses for SOFC Sealant Application (고체산화물 연료전지 밀봉을 위한 $SiO_2-B_2O_3-RO$(CaO, BaO, SrO)계 유리의 결정상 변화에 따른 강도와 미세구조 특성)

  • Park, SungTae;Choi, ByungHyun;Ji, MiJung;Kwan, YoungJin;Choi, HeonJin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • 고체산화물 연료전지는 $800{\sim}1000^{\circ}C$인 고온에서 작동하므로 적용되는 밀봉재의 요구조건은 매우 중요하다. 본 연구에서는 SOFC 밀봉재로서 $SiO_2-B_2O_3-RO$계 결정화 유리를 선정하였으며 작동온도 부근에서 결정화를 유도하여 고온점성유동을 제어하고자 하였다. 따라서 $SiO_2-B_2O_3-RO$계에 RO인 CaO, SrO, BaO, MgO를 상호 치환하였을 때 결정상의 생성, 생성온도, 생성결정의 종류가 sealing 특성에 어떠한 영향을 주는가를 검토하였다. 결정화유리를 $800^{\circ}C$로 유지하였을 때 생성되는 주 결정상은 Calsium silicate, Strontium silicate, Barium silicate, Magnesium silicate이였으며 Strontium silicate 의 생성속도가 가장 빨랐으며 결정상은 불산으로 에칭하여 SEM으로 관찰하였다. Barium silicate를 유도한 결정화 유리가 $800^{\circ}C$에서 1000시간 유지하였을 경우 가장 내화학성이 우수하며 강도값도 154MPa로 가장 높았다. 또한 부분 결정화를 통해 $800^{\circ}C$ 점성유동이 제어됨을 고온현미경을 통해 관찰하였다.

  • PDF

Eu$^{2+}$ Activated Green Phosphor $Ba_2CaMgSi_2O_8:Eu^{2+}$

  • Kim, Jeong-Seog;Piao, Ji Zhe;Choi, Jin-Ho;Cheon, Chae-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1076-1078
    • /
    • 2004
  • In this paper, we report $Eu^{2+}$ activated green phosphor $Ba_2CaMgSi_2O_8:Eu^{2+}$. This phosphor absorbs ultroviolet radation and emits a green visible light. The phosphors were synthesized by conventional solid state reaction method. Reagent grade $BaCO_3$, $CaCO_3$, MgO, $SiO_2$, $Eu_2O_3$ were used as raw materials. The raw materials were mixed thoroughly with an appropriate amount of ethanol in an agate mortar and then dried at 90 $^{\circ}C$ for 2 hours. The mixture was sintered at 900 $^{\circ}C$ for 2 hours and reheated at the mild reducing atmosphere 5% $H_2$ gas mixed with 95% $N_2$ gas at about 900 $^{\circ}C$ to 1250 $^{\circ}C$ for 2 hours. The photoluminescence spectra of the phosphor powders were measured by a fluorescent spectrophotometer. The crystal structure of phosphor powders were investigated by X-ray diffractometer.

  • PDF

$BaSO_4$ 첨가량에 따른 PET 직물 태에 미치는 영향

  • Gwon, Il-Jun;Park, Seong-Min;Kim, Myeong-Sun;Kim, Sang-Uk;Park, Ji-Yeon;Jang, Yeong-Il;Yeom, Jeong-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.102-102
    • /
    • 2011
  • 레이온 섬유는 dry한 촉감, 고광택, 드레이프성 등 의류 분야에서 요구하는 많은 장점들을 가지고 있으나 타 섬유 소재에 비해 소비량이 적은 것은 합섬이나 면/울 제품에 비해 상대적으로 제품 가격이 높고, 형태안정성이 취약하여 정장 및 캐주얼의 겉감 용도로 쓰기에는 성능 보완이 필요하다. 또한 염색가공 공정에서 구김발생이 많으며, 열고정이 쉽게 이루어지지 않아 습윤강도와 탄성 회복률이 낮아 변형이 쉽게 발생된다. 이에 본 연구에서는 합섬의 장점을 그대로 유지하면서 레이온 섬유가 갖는 고비중과 우수한 드레이프성과 유연한 질감으로 소프트 터치를 발현하는 특수한 레이온 대체 소재를 실현하고자 하였다. 직물에서 드레이프성과 은은한 광택을 확보하기 위해서는 폴리머단계에서 비중과 광택을 발현할 수 있는 무기입자 중 비중이 높고, 중합 후 폴리머 내에서 광택을 유지하는 입자의 선택이 필요한데 본 실험에서는 $BaSO_4$를 이용하여 PET dope액과 중합한 후 용융 방사하여 고비중 폴리에스테르사(100/48)를 제조하였다. 고비중 폴리에스테르사를 이용하여 폭 58inch, 밀도 92T, 중량 324.8g/yd 직물로 제직하여 그에 따른 태를 측정하였다. 태측정기(KES-FB, KATO TECH CO)를 이용하여 인장 & 전단강도, 굽힘강도, 압축강도, 표면측정 시험 결과 $BaSO_4$ 2% 첨가한 원단의 드레이프성이 우수한 것을 확인할 수 있었다.

  • PDF