• Title/Summary/Keyword: bZIP transcription factor

Search Result 23, Processing Time 0.02 seconds

An ARIA-Interacting AP2 Domain Protein Is a Novel Component of ABA Signaling

  • Lee, Sun-ji;Cho, Dong-im;Kang, Jung-youn;Kim, Soo Young
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.409-416
    • /
    • 2009
  • ADAP is an AP2-domain protein that interacts with ARIA, which, in turn, interacts with ABF2, a bZIP class transcription factor. ABF2 regulates various aspects of the abscisic acid (ABA) response by controlling the expression of a subset of ABA-responsive genes. Our expression analyses indicate that ADAP is expressed in roots, emerging young leaves, and flowers. We found that adap knockout mutant lines germinate more efficiently than wild-type plants and that the mutant seedlings grow faster. This suggests that ADAP is involved in the regulation of germination and seedling growth. Both germination and post-germination growth of the knockout mutants were partially insensitive to ABA, which indicates that ADAP is required for a full ABA response. The survival rates for mutants from which water was withheld were low compared with those for wild-type plants. The result shows that ADAP is necessary for the response to stress induced by water deprivation. Together, our data indicate that ADAP is a positive regulator of the ABA response and is also involved in regulating seedling growth. The role of ADAP is similar to that of ARIA, which is also a positive regulator of the ABA response. It appears that ADAP acts through the same ABA response pathway as ARIA.

Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo (생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위)

  • Na, Won-Heum;Kang, Han-Seung;Eo, Jin-Won;Gye, Myung-Chan;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Reactive oxygen species(ROS) generated in cellular metabolism have an effect on cell maturation and development. In human reproductive tract, oxidative injury by ROS may induce female infertility. Also, oxidative injury may be responsible for developmental retardation and arrest of mammalian preimplantation embryos. Activating transcription factor 4(ATF4) is a member of the cyclic-AMP response element-binding(CREB) familiy of basic region- leucine zipper(bZip). ATF4 is known to regulate stress response to protect cell from various stress factors and inducer of apoptisis. The purpose of this study was to investigate whether ATF4 is involved in the defensive mechanism in oxidative stress condition during the development of mouse preimplantation embryos. To verify the expression of ATF4 in oxidative stress condition, 2-cell stage embryos were cultured in HTF media containing 0.1mM, 0.5mM or 1mM hydrogen peroxide($H_2O_2$) for 1hr(2-cell), 8hr(4-cell), 17hr(8-cell), 24hr(morula), 48hr(early blastocyst) or 64hr(late blastocyst). The developmental rate decreased in the 0.1mM $H_2O_2$ treated group compared with control group. In embryos treated with 0.5mM and 1mM $H_2O_2$ showed 2-cell block. As a results of the semi-quantitative RT-PCR analysis of SOD1, ATF4 and Bax gene expression, SOD1, ATF4 and Bax genes were increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. In 2-cell embryos, expression of SOD1, ATF4 and Bax genes were notably increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. Immunofluorescence analysis showed that ATF4 protein was localized at the cytoplasm of preimplantation embryos. The increase in ATF4 immunoreactivety was observed in the 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. It suggests that oxidative stress by $H_2O_2$ induces expression of ATF4 and may be involved in protection mechanism in preimplantation embryos from oxidative injury.

  • PDF

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.