• Title/Summary/Keyword: azoospermia

Search Result 84, Processing Time 0.02 seconds

Screening of the Single Nucleotide Polymorphisms in the Protamine 1 and 2 Genes of Korean Infertile Men (한국 남성 불임환자에서 Protamine 1과 2 유전자의 Single Nucleotide Polymorphism에 관한 연구)

  • Lee, Hyoung-Song;Choi, Hye Won;Park, Yong-Seog;Seo, Ju Tae;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.279-286
    • /
    • 2005
  • Objective: Although several genetic factors have been associated with defects in human spermatogenesis, the unambiguous causative genes have not been elucidated. The male infertility by haploinsufficiency of PRM1 or PRM2 has been reported in mouse model. The aim of this study was to identify the single nucleotide polymorphisms (SNPs) of PRM1 and PRM2, related to the genotype of Korean infertile men. Methods: Genomic DNAs were extracted from peripheral bloods of infertile men with oligozoospermia or azoospermia, and analyzed using polymerase chain reaction (PCR) and direct sequencing. We carried out the direct sequencing analysis of amplified fragments in PRM1 (557 nucleotides from -42 to 515) and PRM2 (599 nucleotides from 49 to 648) genes, respectively. Results: Three SNPs of coding region in the PRM1 gene was found in the analysis of 130 infertile men. However, the SNPs at a133g (aa 96.9%, ag 3.1% and gg 0.0%), c160a (cc 99.2%, ca 0.8% and aa 0.0%) and c321a (cc 56.9%, ca 35.4% and aa 7.7%) coded the same amino acids, in terms of silence phenotypes. On the other hand, as results of the PRM2 gene sequencing in 164 infertile men, only two SNPs, g398c (gg 62.2%, gc 31.1% and ga 6.7%) and a473c (aa 63.4%, ac 29.9% and cc 6.7%), were identified in the intron of the PRM2 gene. Conclusions: There was no mutation and significant SNPs on PRM1 and PRM2 gene in Korean infertile men. These results suggest that the PRM1 and PRM2 genes are highly conserved and essential for normal fertility of men.

Outcome of Preimplantation Genetic Diagnosis in Patients with Klinefelter Syndrome (클라인펠터 증후군 환자에서 착상전 유전진단의 결과)

  • Kim, Jin-Yeong;Lim, Chun-Kyu;Jun, Jin-Hyun;Park, So-Yeon;Seo, Ju-Tae;Cha, Sun-Hwa;Koong, Mi-Kyoung;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.253-260
    • /
    • 2004
  • Objectives: Klinefelter syndrome is the most common genetic cause of male infertility and presents with 47, XXY mainly or 46, XX/47, XXY mosaicism. It is characterized by hypogonadism and azoospermia due to testicular failure, however, sporadic cases of natural pregnancies have been reported. With the development of testicular sperm extraction (TESE) and intracytoplasmic sperm injection (ICSI), sperm can be retrieved successfully and ART is applied in these patients for pregnancy. It has been suggested that the risk of chromosome aneuploidy for both sex chromosome and autosome is increased in the sperms from 47, XXY germ cells. Considering the risk for chromosomal aneuploidy in the offspring, preimplantation genetic diagnosis (PGD) could be applied as a safe and more effective treatment option in Klinefelter syndrome. The aim of this study is to assess the outcome of PGD cycles by using FISH for sex chromosome and autosome in patients with Klinefelter syndrome. Materials and Methods: From Jan. 2001 to Dec. 2003, PGD was attempted in 8 cases of Klinefelter syndrome but TESE was failed to retrieve sperm in the 3 cases, therefore PGD was performed in 8 cycles of 5 cases (four 47, XXY and one 46, XY/47, XXY mosaicism). In one case, ejaculated sperm was used and in 4 cases, TESE sperm was used for ICSI. After fertilization, blastomere biopsy was performed in $6{\sim}7$ cell stage embryo and the chromosome aneuploidy was diagnosed by using FISH with CEP probes for chromosome X, Y and 17 or 18. Results: A total of 127 oocytes were retrieved and ICSI was performed in 113 mature oocytes. The fertilization rate was $65.3{\pm}6.0%$ (mean$\pm$SEM) and 76 embryos were obtained. Blastomere biopsy was performed in 61 developing embryos and FISH analysis was successful in 95.1% of the biopsied blastomeres (58/61). The rate of balanced embryos for chromosome X, Y and 17 or 18 was $39.7{\pm}6.9%$. The rate of aneuploidy for sex chromosome (X and Y) was $45.9{\pm}5.3%$ and $43.2{\pm}5.8%$ for chromosome 17 or 18, respectively. Embryo transfer was performed in all 8 cycles and mean number of transferred embryos was $2.5{\pm}0.5$. In 2 cases, clinical pregnancies were obtained and normal 46, XX and 46, XY karyotypes were confirmed by amniocentesis, respectively. Healthy male and female babies were delivered uneventfully at term. Conclusion: The patients with Klinefelter syndrome can benefit from ART with TESE and ICSI. Considering the risk of aneuploidy for both sex chromosome and autosome in the sperms and embryos of Klinefelter syndrome, PGD could be offered as safe and more effective treatment option.

Monocentric Derivative Y Chromosome with Duplication of the SRY Gene in an Azoospermic Male (무정자증 불임남성에서 관찰된 SRY 유전자의 중복을 동반한 일동원체성 derivative Y 염색체)

  • Choi, Eun-Young;Lee, Bom-Yi;Park, Ju-Yeon;Lee, Yeon-Woo;Oh, Ah-Rum;Lee, Shin-Young;Kim, Shin-Young;Han, You-Jung;Lee, Mee-Bum;Ryu, Hyun-Mee;Seo, Ju-Tae;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • v.7 no.2
    • /
    • pp.160-164
    • /
    • 2010
  • Structural abnormalities of the Y chromosome affect normal testicular differentiation and spermatogenesis. The present case showed a rare monocentric derivative Y chromosome with partial duplication of Yp including the SRY gene and deletion of Yq12 heterochromatin. The karyotype was 46,X,der(Y)(pter${\rightarrow}$q11.23::p11.2${\rightarrow}$pter).ish der(Y)(DYZ3+,DYZ1-,SRY++), confirmed through a FISH study. Even though the patient possessed an abnormal Y chromosome, testicular biopsy showed normal testicular volumes in the proband, with gonadal hormonal levels in the normal range but bilateral varicocele and hypospermatogenesis. We speculate that the abnormal Y chromosome arose from sister chromatids during Y chromosome recombination or intra chromosomal NAHR (non-allelic homologous recombination) during meiosis in the patient's father or in the very early stages of embryogenesis. The derivative Y chromosome might interfere in the meiotic stage of spermatogenesis, leading to the developmental arrest of germ cells. The present case illustrates that the infertility phenotype can have various causes. Also, it emphasizes the importance of accurate and various genetic analyses and could aid in male infertility treatment.

The Comparion of Pregnancy Outcomes between GnRH Agonist and GnRH Antagonist Cycles in Women with Advanced Age (37세 이상의 환자에서 체외수정시술시 GnRH Agonist 주기와 GnRH Antagonist 주기의 비교 연구)

  • Park, Chan Woo;Cha, Sun Wha;Kim, Hae Suk;Kim, Hye Ok;Yang, Kwang Moon;Kim, Jin Young;Song, In Ok;Yoo, Keun Jae;Kang, Inn Soo;Koong, Mi Kyoung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.261-268
    • /
    • 2005
  • Objective: To compare the clinical results and pregnancy outcomes of in vitro fertilization (IVF) between GnRH antagonist cycles and GnRH agonist (GnRH-a) cycles including flare-up and long protocol in women with advanced age. Materials and Methods: Retrospective clinical study. From January 2001 to September 2003, IVF cycles of female patient 37 years over were included in this study. GnRH-a long protocol (62 cycles, 61 patients) and GnRH antagonist multi-dose flexible protocol (66 cycles, 51 patients) were compared with the control group of GnRH-a flare-up protocol (151 cycles, 138 patients). IVF cycles for non-obstructive azoospermia (NOA), endometriosis III, IV and polycystic ovarian syndrome (PCOS) were excluded in this study. Clinical results such as total gonadotropin dose, serum E2 on hCG administration, the number of retrieved oocytes and the pregnancy outcomes - clinical pregnancy rate (CPR), implantation rate (IR) and live birth rate (LBR) per embryo transfer - were compared. Results: There were significant differences in the total dose of gonadotropin (GnRH-a flare-up vs. GnRH-a long vs. GnRH-antagonist; 41.8 vs. 54.7 vs. 24.8), serum E2 on hCG administration (1787.2 vs. 1881.6 vs. 788.0), the numbers of retrieved oocytes (8.1 vs. 11.1 vs. 4.5) and endometrial thickness (9.1 vs. 10.4 vs. 8.0) which were significantly lower in GnRH-antagonist cycles. But pregnancy outcomes shows no significant differenced in CPR (25.0% vs. 35.8% vs. 24.5%), IR (11.7% vs. 12.3% vs. 10.1%) and LBR (15.8% vs. 28.3% vs. 15.1%) Conclusion: In women with advanced age, GnRH-antagonist cycles can result in comparable pregnancy outcomes to GnRH-a cycles including flare-up and long protocol. GnRH-a long protocol show higher CPR, IR and LBR than GnRH antagonist multi-dose flexible protocol and flare-up protocol without significant differences.