• Title/Summary/Keyword: axon

Search Result 180, Processing Time 0.026 seconds

The role of botulinum toxin type A related axon transport in neuropathic pain induced by chronic constriction injury

  • Bu, Huilian;Jiao, Pengfei;Fan, Xiaochong;Gao, Yan;Zhang, Lirong;Guo, Haiming
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.391-402
    • /
    • 2022
  • Background: The mechanism of peripheral axon transport in neuropathic pain is still unclear. Chemokine ligand 13 (CXCL13) and its receptor (C-X-C chemokine receptor type 5, CXCR5) as well as GABA transporter 1 (GAT-1) play an important role in the development of pain. The aim of this study was to explore the axonal transport of CXCL13/CXCR5 and GAT-1 with the aid of the analgesic effect of botulinum toxin type A (BTX-A) in rats. Methods: Chronic constriction injury (CCI) rat models were established. BTX-A was administered to rats through subcutaneous injection in the hind paw. The pain behaviors in CCI rats were measured by paw withdrawal threshold and paw withdrawal latencies. The levels of CXCL13/CXCR5 and GAT-1 were measured by western blots. Results: The subcutaneous injection of BTX-A relieved the mechanical allodynia and heat hyperalgesia induced by CCI surgery and reversed the overexpression of CXCL13/CXCR5 and GAT-1 in the spinal cord, dorsal root ganglia (DRG), sciatic nerve, and plantar skin in CCI rats. After 10 mmol/L colchicine blocked the axon transport of sciatic nerve, the inhibitory effect of BTX-A disappeared, and the levels of CXCL13/CXCR5 and GAT-1 in the spinal cord and DRG were reduced in CCI rats. Conclusions: BTX-A regulated the levels of CXCL13/CXCR5 and GAT-1 in the spine and DRG through axonal transport. Chemokines (such as CXCL13) may be transported from the injury site to the spine or DRG through axonal transport. Axon molecular transport may be a target to enhance pain management in neuropathic pain.

Ultrastructural Study on the Development of the Tracheal Ganglia of Human Fetus (기관신경절 발육에 관한 전자현미경적 연구)

  • Yoon, Jae-Rhyong;Seo, Ki-Bae;Kim, Baik-Yoon
    • Applied Microscopy
    • /
    • v.26 no.2
    • /
    • pp.137-155
    • /
    • 1996
  • The development of the ganglia of the trachea was studied by electron microscopy in human fetuses ranging from 40 mm to 260 mm crown rump length. At 40 mm fetus, the tracheal ganglia was observed in the submucosa of the trachea. The primitive ganglia consisted of neuroblasts, undifferentiated cells, and unmyelinated nerve fibers. At 50 mm fetus, the neuroblast and their processes in the tracheal ganglia ware ensheathed by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, and ribosomes. At 70 mm fetus, cholinergic and adrenergic axon terminals were observed. Cholinergic axon terminals with agranular vesicles were abundant in the tracheal ganglia with increasing age. During next prenatal stage from 100 mm fetus, the ganglion cells and its processes were completely covered by a thin processes of the satellite cells. Unmyelinated nerve fibers were also completely ensheathed by processes of Schwann cell. Synaptic contacts between the cholinergic axon and dendrite of ganglion cells and a few dendrodendritic synapses were first observed at 100 mm fetus. The granule-containing cells were first identified in the tracheal ganglia at 200 mm fetus. These findings indicate that tracheal ganglia of human fetus resembles other parasympathetic and sympathetic ganglia, but not the enteric ganglia.

  • PDF

Monoclonal Antibody Recognizing Nervous System Specific Protein of Drosophila melanogaster (초파리 신경계특이적인 단일클론항체의 제작과 그 항원의 국재)

  • 윤춘식
    • Journal of Life Science
    • /
    • v.8 no.5
    • /
    • pp.571-575
    • /
    • 1998
  • The nerve system specific protein of Drosophila melanogaster was produced by using heads of flies as the antigen. The monoclonal antibody 6H6 recognized the disabled molecules that a kind of tyrosine kinase substrate by expres-sion cDNA library screening method. At the same time, the antibody also specifically recognized C-terminal region of disabled protein from 7427 to 8761bp by DNA sequencing. In early embryos, the localization of antigen appeared in the central nerve system. In adult flies, the antigen showed specific localization on the axon of optic nerve, cerebral nerve and thoracic nerve, and they also expressed on the muscular nerve. The molecules of disabled are expected to carry an important function in developing central nerve system. In adult flies, it is suggested that the disabled molecules have a role for muscular nerve as well as neural axon.

  • PDF

Ultrastructural Observations of Glutamatergic Synaptic Components in the Basilar Pontine Nuclei of the Dog (개의 교핵내 glutamate성 연접 성분의 미세구조적 위치관찰)

  • Lee, Hyun-Sook
    • Applied Microscopy
    • /
    • v.27 no.1
    • /
    • pp.57-70
    • /
    • 1997
  • The distribution of glutamatergic synaptic structures in the dog basilar pons was investigated at the ultrastructural level using monoclonal antibodies against fixative-modified glutamate. Electron-dense reaction product was densely localized at the perinuclear region in the neurenal somata and often observed along the microtubules located within the dendritic processes. One or more unlabelled axon terminals made asymmetric synaptic contacts with glutamate-immunoreactive dendritic profiles. In audition, reaction product was observed either within axonal processes surrounded by myelin sheath or axon terminals. Immunoreactive axon terminals made asymmetric synaptic contact either with unlabelled or labelled dendritic profiles. These observations provided an anatomic evidence of how this excitatory neural element might perform its function in a multisynaptic pathway involving glutamatergic afferents to the basilar pons, glutamate-immunoreactive pontocerebellar projection neurons, and the glutamate-positive granule cells of the cerebellar cortex.

  • PDF

Ultrastructural Changes in the Adrenal Chromaffin Cells and Ganglion Cells in the Adrenal Gland of Vacor-Induced Diabetic Mongolian Gerbil (Vacor 유발당뇨 모래쥐의 부신수질의 크롬친화성세포와 신경절세포의 미세구조)

  • Park, Jae-Hwang;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • v.25 no.1
    • /
    • pp.30-47
    • /
    • 1995
  • The ultrastructural changes of adrenal chromaffin cells and ganglion cells in the adrenal gland of vacor-induced diabetic Mongolian gerbils were studied by electron microscopy. After one month of vacor-induced diabetes, some chromaffin cells were filled with dense bodies and large cytosomes with formy contents. Most of degenerating axon terminals were observed on chromaffin cells. A few macrophages were found among chromaffin cells at one month after induction. Several of these macrophages were filled with numerous phagosomes. After one month of vacor-induced diabetes, the ganglion cells showed increase in numbers of dense bodies and degenerating dendrites compared with the normal ganglion cells. Both electron dense and lucent types of degenerating axon terminals were found in interstitial space of the ganglion cells. Degenerating unmyelinated and myelinted axons contained dense and lamellar bodies. The satellite cells and macrophages with engulfed degenerated axon terminals were observed. After three months of vacor-induced diabetes, the unmyelinated and myelinated axons showed degenerative changes, whereas no structural changes could be demonstrated in adrenal ganglion and chromaffin cells. The satellite cells and macrophages containing partially digested debris were still commonly observed in the interstitial space of adrenal medulla. These results suggest that the degenerative changes occur in the adrenal ganglion cells as well as adrenal chromaffin cells of vacor-induced diabetic Mongolian gerbils.

  • PDF

Fine Structure of Neurons and Synaptic Organization in Pallidum of the Cat (고양이 담창구 (Globus Pallidus)의 신경원과 연접기구에 대한 미세구조)

  • Park, W.B.;C.Y. Yun
    • The Korean Journal of Zoology
    • /
    • v.26 no.2
    • /
    • pp.107-123
    • /
    • 1983
  • The globus pallidus of normal cats were prepared for electron microscopic study following perfusion with a mixture of 1% paraformaldehyde and 1% glutaraldehyde solution. Neurons of two size categories were identified in 1 $\\mu$m araldite sections and their ultrastructural characteristics were studied in adjacent thin section. 1. Large neurons ($30 \\mum \\times 45 \\mum$ in diameter) had extensive areas of rough surfaced endoplasmic reticulm, abundant perinuclear Golgi complex, numerous mitochondria and lipofusin granule, and had a large spherical nucleus with shallow indentation of nuclear manbrane. Small neurons ($17 \\mum \\times 27 \\mum$ in diameter) had poorly rough surfaced endoplasmic reticulum, moderate number of mitochondria and randomly distributed Golgi complex. The nuclear envelope of this cell frequently showed multiple deep invagination. 2. Three types of axo-somatic synapses were identified on the basis of the size and shape of vesicle in the axon terminal and the symmetrical or asymmetrical thickening at the synaptic site. Type I synaptic terminal shows an even distribution of round and oval synaptic vesicles, and has a symmetrical synaptic thickening. Type II axon terminals reveal mostly round and pleomorphic vesicles and a few vesicles were localized near the presynaptic membrane in pale axoplasm and its synaptic thickening were symmetric. Type III axon terminals contain round vesicles, which were aggregated in the axoplasm, and has a asymmetrical synaptic thickening. 3. The majority of axo-somatic contact with the large and small neurons were type I, and type II and III synapes were rare.

  • PDF

A Study on the Changes of the Synaptic Structures in the Interpolar Part of Spinal Trigeminal Nucleus of Rat during Aging (연령증가에 따른 흰쥐 삼차신경척수핵 중간부분에서의 신경연접구조의 변화에 관한 연구)

  • Kim, Myung-Kook;Kim, Cheol-We;Paik, Ki-Suk;Lim, Bum-Soon
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.255-262
    • /
    • 1998
  • This study was performed to observe the morphological changes of the synaptic structures in the interpolar part of the spinal trigeminal nucleus of rat during aging. Transmission electron microscopy has been used to determine the r)umber of synapses, length of postsynaptic densities, number and area of axon terminals. Sprague-Dawley rat 3, 12, 24 and 36 months of age were used in this study. 1. The number of synapses was 51.7, 43.1, 28.4 and 16.8 in the 3, 12, 24 and 36 months of age respectively. Therefore, the number of synapses decreased gradually with age, but decreased significantly in the 24 and 36 months. 2. The length of postsynaptic densities was $30.2{\mu}m,\;23.6{\mu}m,\;10.4{\mu}m\;and\;4.9{\mu}m$ in the 3, 12, 24 and 36 months of age respectively. Therefore, the length of postsynaptic densities decreased gradually with age, but decreased significantly in the 24 and 36months. 3. The number of axon terminals was 84.3, 73.7, 51.4 and 26.6 in the 3, 12, 24 and 36 months of age respectively. Therefore, the number of axon terminals decreased gradually with age, but decreased significantly in the 24 and 36months. 4. The area of axon terminals was $76.1{\mu}m^2,\;64.1{\mu}m^2,\;29.9{\mu}m^2\;and\;13.8{\mu}m^2$ in the 3, 12, 24 and 36 months of age respectively. Therefore, the area of axon terminals decreased gradilally with age, but decreased significantly in the 24 and 36 months. The results suggest that there are the changes of the synaptic structures in the interpolar part of spinal trigeminal nucleus of rat during aging. These changes nay be concerned to the decreased function of mediating pain and temperature sensation in the face and oral cavity during aging.

  • PDF

A Study on the Propagation Phenomenon of Neural Stimulated Potential using Distributed Electrical Circuit (뉴런의 분포정수 회로화에 의한 자극전위의 전도현상 연구)

  • Che, Gyu-Shik
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.256-263
    • /
    • 2011
  • The nerve impulse is induced by the stimulation of neuron or axon, and this stimulated voltage decays along the propagation distance and time if it is subtreshold potential. This behavior can be estimated using the electrical equivalent circuit because it is very similar to propagation phenomenon of electrical circuit to which Ohm's law is applied. Therefore, I calculated various biometric parameters of body, and then analyzed the propagation behavior of stimulated potential voltage using the distributed parameters of electrical circuit in this paper.

Cellular and molecular change including nerve regeneration after peripheral nerve injury (말초신경 손상 후 재생과 관련된 세포적, 분자적 변화)

  • Baek Su-Jeong;Kim Dong-Hyun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.415-432
    • /
    • 2000
  • In mammals. axotomy of peripheral nerve leads to a complex. These events include swelling of cell body, disappearance of Nissl substance. Proximal and distal axon undergoes a variable deriable degree of traumatic degeneration and wallerian degeneration, respectively. Nerve injury may result in cell death or regeneration. Molecular changes include proliferation of Schwann cells, upregulation of neurotropism, neural cell adhesion molecules and cytokine. Also growth cone plays an essential role in axon guidance through interaction of cytoskeleton. We review cellular and molecular events after nerve injury and describe nerve regeneration and associated proteins.

  • PDF