• Title/Summary/Keyword: axle spacing

Search Result 11, Processing Time 0.028 seconds

Identification of moving train loads on railway bridge based on strain monitoring

  • Wang, Hao;Zhu, Qingxin;Li, Jian;Mao, Jianxiao;Hu, Suoting;Zhao, Xinxin
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.263-278
    • /
    • 2019
  • Moving train load parameters, including train speed, axle spacing, gross train weight and axle weights, are identified based on strain-monitoring data. In this paper, according to influence line theory, the classic moving force identification method is enhanced to handle time-varying velocity of the train. First, the moments that the axles move through a set of fixed points are identified from a series of pulses extracted from the second derivative of the structural strain response. Subsequently, the train speed and axle spacing are identified. In addition, based on the fact that the integral area of the structural strain response is a constant under a unit force at a unit speed, the gross train weight can be obtained from the integral area of the measured strain response. Meanwhile, the corrected second derivative peak values, in which the effect of time-varying velocity is eliminated, are selected to distribute the gross train weight. Hence the axle weights could be identified. Afterwards, numerical simulations are employed to verify the proposed method and investigate the effect of the sampling frequency on the identification accuracy. Eventually, the method is verified using the real-time strain data of a continuous steel truss railway bridge. Results show that train speed, axle spacing and gross train weight can be accurately identified in the time domain. However, only the approximate values of the axle weights could be obtained with the updated method. The identified results can provide reliable reference for determining fatigue deterioration and predicting the remaining service life of railway bridges.

A new bridge-vehicle system part II: Parametric study

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.21-38
    • /
    • 2003
  • The formulation of a new bridge-vehicle system using shell with eccentric beam elements has been introduced in a companion paper (Part I). The new system takes into account of the contribution of the twisting and pitching modes of vehicles to the bridge responses. It can also be used to study the dynamic transverse load distribution of a bridge. This paper presents a parametric study on the impact induced by one vehicle or multi-vehicle running across a bridge using the proposed model. Several parameters were considered as variables including the mass ratio, the speed parameter, the frequency ratio and the axle spacing parameter to investigate their effects on the impact factor. A total number of 189 cases were carried out in this parametric study. Within the realistic range of vehicle considered, the maximum impact factors could be 2.24, 1.78 and 1.49 for bridges with spans 10 m, 20 m and 30 m respectively.

Comparison of Dynamic Loading Effects Using the Train Signature (Train Signature를 이용한 열차하중의 동적하중효과 비교)

  • Kim Hyun-Min;Oh Ji-Taek;Hwang Won-Sub
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.586-590
    • /
    • 2005
  • In order to compare the dynamic loading effects of particular trains it is necessary to use methodology that separates the two inherent aspects of the dynamic response of the total dynamic system-the characteristics of the train and a bridge. Because the train signature profile is a function of axle spacing and axle loads, it can be calculated which is independent of the characteristics of an individual bridge. Thus the use of the train signature enables a rapid comparison of the effects of different trains to be made. If the magnitude of train signature for a new train type is less than of existing trains on a route then the route will be satisfactory for the new train. This study presents a quantitative analysis of the dynamic loading effects for various domestic real trains-PMC8, PMC16, Mugunhwa passenger coach, several freight coach, KTX and TTX(Tilting Train Express)- Using the train signature.

  • PDF

A new bridge-vehicle system part I: Formulation and validation

  • Chan, Tommy H.T.;Yu, Ling;Yung, T.H.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.1
    • /
    • pp.1-19
    • /
    • 2003
  • This paper presents the formulation of a new bridge-vehicle system with validation using the field data. Both pitching and twisting modes of the vehicle are considered in the contribution of the dynamic effects in the bridge responses. A heavy vehicle was hired as a control vehicle with known axle weight, axle spacing and spring coefficients. The measured responses were generated from the control vehicle running at a particular speed at a test span at Ma Tau Wai Flyover. The measured responses were acquired using strain gauges installed beneath the girder beams of the test bridge. The simulated responses were generated using BRVEAN that is a self-developed program based on the proposed bridge-vehicle system. The validation shows that the bridge model is valid for representing the test bridge and the governing equations are valid for representing the motion of moving vehicles.

Identification of Running Vehicle Properties by Vertical Stiffener Response of Steel Girder Bridge (강 거더교의 수직보강재 응답을 이용한 주행차량의 특성 추정)

  • Lee, Hee-Hyun;Jeon, Jun-Chang;Jung, Min-Sun;Kyung, Kab-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.1
    • /
    • pp.86-95
    • /
    • 2012
  • The BWIM(Bridge Weigh-In-Motion) is a technology to identify vehicle properties, such as weight, speed, axle spacing and running lane, passing over a bridge by using dynamic response of bridge member. Such information will be used for assessing durability and establishing a maintenance strategy of roadway structures. In this paper, as a first step for developing BWIM system, analytical and experimental studies were conducted in order to verify whether the response of vertical stiffener in steel girder bridge can be used to identify vehicle properties running on the bridge. It was known from this study that such vehicle information could be estimated reasonably by using strain time history curve of a vertical stiffener due to running vehicles. It is because the effect of each axle-load of vehicle appears definitely in the curve. However, as the magnitude of strain of vertical stiffener is effected by running pattern of vehicles, further study is necessary to reduce error when estimating vehicle weight.

Parametric Study on Thermal Buckling of CWR Tracks (장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구)

  • 최동호;김호배
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

A Study on Weight Estimation of Moving Vehicles using Bridge Weigh-in-Motion Technique (Bridge Weigh-in-Motion 기법을 이용한 주행차량 중량추정에 관한 연구)

  • Oh, Jun-Seok;Park, Jooyoung;Kim, Junkyeong;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this study, the estimation of axial load and total axial load was conducted using Bridge Weigh-in-Motion(BWIM) technique which generally consists of devices for measuring the strain induced in the bridge by the vehicles. axle detectors for collecting information on vehicle velocity and axle spacing. and data acquisition equipment. Vehicle driving test for the development of the BWIM system is necessary but it needs much cost and time. In addition, it demands various driving conditions for the test. Thus, we need a numerical-simulation method for resolving the cost and time problems of vehicle driving tests, and a way of measuring bridge response according to various driving conditions. Using a bridge model reflecting the dynamic characteristic contributes to increased accuracy in numerical simulation. In this paper, we conduct a numerical simulation which reflects the dynamic characteristic of a bridge using the Bridge Weigh-in-Motion technique, and suggest overload vehicle enforcement technology.

Simplified Bridge Weigh-In-Motion Algorithm using Strain Response of Short Span RC T-beam Bridge with no Crossbeam installed (가로보가 없는 단지간 RC T빔교의 변형률 응답을 이용한 단순화된 BWIM (Bridge Weigh-In-Motion) 알고리즘)

  • Jeon, Jun-Chang;Hwang, Yoon Koog;Lee, Hee-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.57-67
    • /
    • 2021
  • A thorough administration of the arterial road network requires a continuous supply of updated and accurate information about the traffic that travels on the roads. One of the ways to effectively obtain the traffic volume and weight distribution of heavy vehicles is the BWIM technique, which is actively being studied. Unlike previous studies, this study was performed to develop a simplified Bridge Weigh-In-Motion (BWIM) algorithm that can easily estimate the axle spacing and weight of a traveling vehicle by utilizing the structural characteristics of the bridge. A short span RC T-beam bridge with no crossbeam installed was selected for the study, and then the strain response characteristics of bridge deck and girder was checked through preliminary field test. Based on the preliminary field test results, a simplified BWIM algorithm suitable for the bridge to be studied was derived. The validity and accuracy of the BWIM algorithm derived in this study were verified through field test. As a result of the verification test, the proposed BWIM algorithm can estimate the axle spacing and gross weight of the travelling vehicles with the average percent error of less than 3%.

A new look at the restrictions on the speed and magnitude of train loads for bridge management

  • Aflatooni, Mehran;Chan, Tommy H.T.;Thambiratnam, David P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.89-104
    • /
    • 2015
  • In current bridge management systems (BMSs), load and speed restrictions are applied on unhealthy bridges to keep the structure safe and serviceable for as long as possible. But the question is, whether applying these restrictions will always decrease the internal forces in critical components of the bridge and enhance the safety of the unhealthy bridges. To find the answer, this paper for the first time in literature, looks into the design aspects through studying the changes in demand by capacity ratios of the critical components of a bridge under the train loads. For this purpose, a structural model of a simply supported bridge, whose dynamic behaviour is similar to a group of real railway bridges, is developed. Demand by capacity ratios of the critical components of the bridge are calculated, to identify their sensitivity to increase of speed and magnitude of live load. The outcomes of this study are very significant as they show that, on the contrary to what is expected, by applying restriction on speed, the demand by capacity ratio of components may increase and make the bridge unsafe for carrying live load. Suggestions are made to solve the problem.

Effect of vehicle flexibility on the vibratory response of bridge

  • Lalthlamuana, R.;Talukdar, Sudip
    • Coupled systems mechanics
    • /
    • v.3 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • In the recent times, dimensions of heavy load carrying vehicle have changed significantly incorporating structural flexibility in vehicle body. The present paper outlines a procedure for the estimation of bridge response statistics considering structural bending modes of the vehicle. Bridge deck roughness has been considered to be non homogeneous random process in space. Influence of pre cambering of bridge surface and settlement of approach slab on the dynamic behavior of the bridge has been studied. A parametric study considering vehicle axle spacing, mass, speed, vehicle flexibility, deck unevenness and eccentricity of vehicle path have been conducted. Dynamic amplification factor (DAF) of the bridge response has been obtained for several of combination of bridge-vehicle parameters. The present study reveals that flexible modes of vehicle can reduce dynamic response of the bridge to the extent of 30-37% of that caused by rigid vehicle model. However, sudden change in the bridge surface profile leads to significant amount of increment in the bridge dynamic response even if flexible bending modes remain active. The eccentricity of vehicle path and flexural/torsional rigidity ratios plays a significant role in dynamic amplification of bridge response.