• Title/Summary/Keyword: axisymmetric shape

Search Result 186, Processing Time 0.024 seconds

Hydroforming of a Non-axisymmetric Thin-walled Tubular Component with Variable Cross Sections (가변 단면을 가지는 비대칭 얇은 관 부품의 액압성형 연구)

  • Kang, H.S.;Joo, B.D.;Hwang, T.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.368-374
    • /
    • 2015
  • Hydroforming of a non-axisymmetric thin-walled tubular component with variable cross sections was analyzed. In order to solve the sealing problem which occurred due to the thin and non-axisymmetric shape, the use of a lead patch on the punch, which had been successful in hydroforming of thin tubes, was evaluated. A lead patch was attached to the punch to solve the sealing problem, which was caused by the stress gradient in the non-axisymmetric shape. FEM and experiments were also performed to analyze these sealing problems associated with the punch shape and non-axisymmetric shape. Finally, the lead patch was attached at tube surface where intensive local strain concentration would occur to enhance the hydroformability. These methods were successfully used to fabricate non-axisymmetric thin-walled tubular component with variable cross sections that had previously failed during traditional hydroforming.

Development on the Automated Process System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계 시스템 개발)

  • 이봉규;조해용;권혁홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.527-530
    • /
    • 1997
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for th system are extracted from the plasticity theories. handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts are needed both front view and plane. At the plane, this system cognizes the external shape of non-axisymmetric parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and hight of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

  • PDF

A Study on the Automated Process Planning System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계시스템에 관한 연구)

  • Lee, Bong-Gyu;Jo, Hae-Yong;Gwon, Hyeok-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • An automated process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in the AutoCAD using a personal computer and are composed of four main modules such as input module, shape cognition and shape expression module, material diameter determination module and process planning module. The design rules and knowledges for the system are extracted from the plasticity theories, handbook, relevant reference and empirical knowledge of field experts. Generally, in forging, only front view is needed for expression of axisymmetric parts, but non-axisymmetric parts need front and plane view. At the plane, this system cognizes the external shape of non-axisymmetric, parts - number of sides of regular polygon and radius of a circle circumscribing the polygon of n sides. At the front view, the system perceives diameter of axisymmetric portions and height of primitive geometries such as polygon, cylinder, cone, concave, convex, etc.

Application of Expert System for Non-Axisymmetric Deep Drawing Products

  • Park, Diong-Hwan;Kang, Sung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 2001
  • An ecpert system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has not been reported yet. This study construsctus and expert system for non-axisymmetric motor frame which shape is classified into ellipse in deep draqing process and investigates process sequence design with elliptical shape. The developed system consists of four modules. The first is recognition of calculate surface area for non-axisymmetric products. The third is blank design module the creates an oval-shaped blank with the same surface area. The fourth is a processplanning module based on production rules that play the best important roles in an expert system for manufacturing .The production rules are generated and upgraded by interviewing field engineers. Especially, drawing coefficient, punch and die radii for elliptical shape products are considered as main design parameters. The constructed system for elliptical deep drawing product would be very useful to reduce lead time and improve accuracy for products.

  • PDF

Development of Multi-functional Hotwire Cutting System using EPS-foam (발포 폴리스티렌 폼을 이용한 다기능 열선절단장치 개발)

  • 이상호;김효찬;양동열;박승교;김찬국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1414-1417
    • /
    • 2004
  • A thick-layered RP process, transfer-type variable lamination manufacturing using expandable polystyrene foam (VLMST) has been developed to have the advantageous characteristics such as high building speed, low cost for introduction and maintenance of VLM-ST apparatus, and little staircase surface irregularities of parts. However, VLM-ST has difficulty fabricating an axisymmetric shape and a large-sized freeform shape because of the limited sloping angles and small build size. The objective of this paper is to develop a multi-functional hotwire cutting system using EPS-foam (MHC). MHC employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.

  • PDF

Development of Multi-functional Hotwire Cutting System using EPS-foam (발포 폴리스티렌 폼을 이용한 다기능 열선가공장치 개발)

  • Lee Sang-Ho;Kim Hyo-Chan;Yang Dong-Yol;Park Seung-Kyo;Kim Chan-Kuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.194-202
    • /
    • 2005
  • The objective of this paper is to develop a multi-functional hotwire cutting system (MHC) using EPS-foam block or plate as the working material. Because the MHC apparatus employs a four-axis synchronized hotwire cutter with the structure of two XY movable heads and a turntable, it allows the easy fabrication of various 3D shapes, such as (1) an axisymmetric shape or a sweeping cross-sectioned pillar shape using the hot-strip in the form of sweeping surface and EPS foam block on the turntable, (2) a polyhedral complex shape using the hotwire and EPS foam block on the turntable, and (3) a ruled surface approximated freeform shape using the hotwire and EPS foam plate. In order to examine the applicability of the developed MHC apparatus, an axisymmetric shape, a polyhedral shape and a large-sized freeform shape were fabricated on the apparatus.

Development of Process Planning System for Cold Forging of Non-axisymmetric Parts (비축대칭 제품의 냉간단조 공정설계시스템의 개발)

  • 이봉규;권혁홍;조해용
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.405-413
    • /
    • 2002
  • A process planning system for cold forging of non-axisymmetric parts of comparatively simple shape was developed in this study. Programs for the system have been written with Visual LISP in AutoCAD. Shape of the product must be drawn with the solid line and the hidden line, and with the plane and front view, as well. At the plane, the system recognizes the external shape of non-axisymmetric portions - the number of the sides of the regular polygons and the radii of circles inscribing and circumscribing the polygon. At the front view, the system cognizes the diameter of axisymmetric portions and the height of the primitive geometries such as polygon, cylinder, cone, concave, convex, etc. The system perceives that the list developed from the solid line must be formed by the operation of forward extrusion or upsetting, and that the list developed from the hidden line must be formed by the operation of backward extrusion. The system designs the intermediate geometries again by considering clearance between workpiece and die, and then finally the billet diameter, in reverse order from the finished product, on the basis of volume constancy and using the operations, the forming sequence, the number of operations and the intermediate geometries which were already designed. The design rules and knowledges for the system were extracted from the plasticity theories, handbook, relevant reference and empirical knowledge of field experts. Suitability of the process planning was analyzed using SuperForge of FVM simulation package. The results of analysis showed good formability.

Numerical Formulation of Axisymmetric Shell Element and Its Application to Geotechnical Problems (축대칭 쉘 요소의 유한요소 수식화와 지반공학적 활용)

  • Shin, Hosung;Kim, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.27-34
    • /
    • 2020
  • Use of axisymmetric shell element for the structure increases the efficiency and accuracy in finite element analysis of the interaction between the ground and the structure. This paper derived the force balance equation and the moment balance equation for an axisymmetric shell element based on Kirchhoff's theory. The governing equation for the axial deformation used the isoparametric shape function in the Galerkin formulation, and the governing equation for the shell bending used the higher-order shape function. The developed axisymmetric shell element was combined with Geo-COUS, a geotechnical finite element program for the coupled analysis with the ground. The accuracy of the developed element was confirmed through the example analyses of the circular plate and the liquid storage tank. And the energy balance equation for the axisymmetric shell element is presented.

A Study on Improvement of Formability for Deep Drawing Process (디프 드로잉 공정의 성형성 향상에 관한 연구)

  • 최병근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.70-76
    • /
    • 1999
  • Recently most of researches for deep drawing process using sheet metal have been performed on the formability of axisymmetric shape but there have not been any concrete reports on the formability of non-axisymmetric shape In addition the conventional shape radius of the punch and die has been determined by the trying-and-error using industrial experimence and post processing test and only approximate shape radius of the punch and die has been determined by the trying-and-error using industrial experience and post processing test and only approximate shape radius of the punch and die has been present So in this study the optimal shape radius of the punch and die in deep drawing process with biaxisymmetric blank shape would be proposed. Through the deep drawing experiment it is found that in order to obtain the optimal products especially shape radius of the punch and die in all processes is very important.

  • PDF

Application of Process Planning System for Non-Axisymmetric Deep Drawing Products (비축대칭 디프 드로잉 제품에 대한 공정설계 시스템의 적용)

  • 박동환;최병근;박상봉;강성수
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.591-603
    • /
    • 1999
  • A computer-aided process planning system for rotationally symmetric deep drawing products has been developed. The application for non-axisymmetric components, however, has been reported yet. Therefore, this study investigates process sequence design in deep drawing process and constructs a computer-aided process planning system for non-axisymmetric motor frame products with elliptical shape. The system developed consists of three modules. The first one os a 3-dimensional modeling module to calculate surface area for non-axisymmetric products. The second one is a blank design module that creates an oval-shaped blank with the identical surface area. The third one is a process planning module based on production rules that play the best important roles in an expert system for manufacturing. The production rules are generated and upgraded by interviewing with field engineers. Especially, drawing coefficient, punch and die radii are considered as main design parameters. The constructed system for elliptical deep drawing products would be very useful to reduce lead time and improve accuracy for production.

  • PDF