• Title/Summary/Keyword: axis alignment

Search Result 234, Processing Time 0.023 seconds

A Study on the Motion Characteristics of Ultra Precision Optical Element Alignment Stage (초정밀 광소자 정렬 스테이지의 구동 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.81-86
    • /
    • 2005
  • As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement to the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

  • PDF

Biomechanical Characteristics of Comprehensive Ankle Joint Complex between Chronic Ankle Instability (CAI) and Healthy Control (만성 발목 불안정성(CAI) 환자와 건강 대조군 간 종합적 발목관절복합체의 생체역학적 특성)

  • Kim, Byong Hun;Jeong, Hee Seong;Lee, Inje;Jeon, Hyung Gyu;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.168-175
    • /
    • 2021
  • Objective: To investigate the static and dynamic analysis of ankle joint complex between subjects with chronic ankle instability (CAI) and healthy controls. Method: A total of 38 subjects and CAI group (N=19) and healthy control (N=19) participated in this first study. Variables that were measured in this study were as follows: 1) Subtalar joint axis inclination and deviation 2) Rearfoot angle 3) Navicular drop test 4) Heel alignment view in alignment analysis. Intra Correlation Coefficient (ICC) is used for reliability. A secondary 17 subjects are recruited including 9 of CAI and healthy for gait analysis between group. Lower extremity sagittal, frontal, and transverse kinematics were measured. All data were analyzed to ensemble curve analysis. Results: 1) There were statistically significant differences in standing rearfoot, navicular drop, heel alignment view, subtalar joint (STJ) inclination and deviation. 2) Only in sagittal, meaningful difference is showed during walking in gait analysis. Conclusion: Morphological problem can affect ankle sprain in aspect of structure with no relation to compensation of neuromuscular.

Does Coronal Knee and Ankle Alignment Affect Recurrence of the Varus Deformity after High Tibial Osteotomy?

  • Lee, O-Sung;Lee, Seung Hoon;Lee, Yong Seuk
    • Knee surgery & related research
    • /
    • v.30 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate changes in the coronal alignment of the knee and ankle joints after open wedge high tibial osteotomy (OWHTO) to determine factors related to the recurrence (R) of the varus deformity by serial analysis. Materials and Methods: Sixty-four OWHTOs were enrolled in this study. The weight bearing line (WBL) ratio, joint line convergence angle (JLCA), knee joint inclination, mechanical axis-tibial plateau angle, talar inclination (TI), and distal tibia articular angle (DTAA) were serially assessed. Serial correlation analysis between all parameters was performed. Patients were divided into R group and no recurrence (NR) group according to the WBL ratio (55%) at postoperative one year. Results: The preoperative WBL ratio showed significantly negative correlation with serial changes of JLCA, TI, and DTAA (p<0.05). The JLCA, TI, and DTAA as well as WBL ratio showed a significantly larger degree of varus alignment in the R group than in NR group at postoperative 6 weeks and 1 year after OWHTO (p<0.05). Conclusions: Sufficient correction of the WBL and restoration of the JLCA during OWHTO are essential to prevention of the R of varus deformity after the surgery because they are the only modifiable factors during surgery. Level of Evidence: IV, Case series.

A Wafer Alignment Method and Accuracy Evaluation (웨이퍼 정렬법과 정밀도 평가)

  • Park, Hong-Lae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.812-817
    • /
    • 2002
  • This paper presents a development of high accuracy aligner and describes a method to find the orientation of a substantially circular disk shaped wafer with at least one flat region on an edge thereof. In the developed system, the wafer is spun one 360 degree turn on a chuck and the edge position is measured by a linear array to obtain a set of data points at various wafer orientation. The rotation axis may differ from wafer center by an unknown eccentricity. The flat angle is found by fitting a cosine curve to the actual data to obtain a deviation. The maximum deviation is then corrected for errors due to a finite number of data points and wafer eccentricity by calculating an adjustment angle from data points on the wafer fiat. After determining the flat angle the wafer is spun to the desired orientation. The wafer eccentricity can be calculated from four of the data points located away from the flat edge region. and the wafer is then centered.

Alignments of interacting haloes in the Horizon run 4 simulation

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.29.2-29.2
    • /
    • 2015
  • Interactions such as mergers and flybys play a fundamental role in shaping galaxy morphology. We used the Horizon Run 4 cosmological N-body simulations to study the aligments of spins and shapes of interacting haloes as a function of the halo mass and large-scale density. Interactions preferentially occur in the plane of rotation, and in the direction of the major axis of prolate haloes, and the trajectories are preferentially radial and prograde. We found a very strong alignment of the shapes already at redshift as high as 4. The spins are initially unaligned or even anti-aligned, and become more and more aligned as the redshift decreases. The alignment signals are stronger and evolve more at lower densities, and mass plays a secondary role.

  • PDF

A New Method for Measuring Azimuthal Anchoring Energy of Rubbed and UV-Exposed Polyimide Alignment Layers

  • Park, H.J.;Lee, W.K.;Kim, D.G.;Shin, D.C.;Woo, J.W.;Shin, H.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1619-1621
    • /
    • 2007
  • Novel optical measurement systems and improved cell configurations for measuring of azimuthal anchoring energies were developed. The difference between the mechanical rubbing direction and the optical easy axis that caused errors in the previous azimuthal anchoring energy measurement was compensated. In addition, the measurement accuracy of the twist angle and therefore the azimuthal anchoring energy was greatly enhanced. As a result, we were able to obtain valid azimuthal anchoring energy values for different alignment layers.

  • PDF

Equivalent Modeling of an Alignment Stage Based on the Vibration Tests (진동 실험을 바탕으로 한 정렬 스테이지 등가 모델링)

  • Yim, Hong-Jae;Lee, Jung-Suk;Lee, Sung-Hoon;Jeong, Jay-I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.355-360
    • /
    • 2010
  • In this study, a modeling process of a 3-axis planar alignment stage is suggested. Vibration tests using a laser vibro-meter is performed to find the modeling parameters of the stage. By analyzing the result of the test, the stiffness of prismatic joints and revolute joints, as well as the contact conditions of the thrust bearings, can be calculated. The modeling of the stage was validated by comparing six normal mode shapes, which are acquired from experiments and simulations.

Study of Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in Constant Torque Region (매입형 영구자석 동기전동기의 일정 토크 영역에서 최대 토오크 운전에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;Im, Ik-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.195-203
    • /
    • 2000
  • In this paper a new controller is proposed to operate the interior permanent magnet synchronous motor(IPMSM) by the control method of the maximum torque per ampere in constant torque region. The implementation method of the conventional torque controller is explained and analyzed exactly. The proposed controller does not use the torque and q-axis current of the speed controller but the amplitude of the stator current in order to utilize not only the magnetic alignment torque but also the reluctance in the constant region, gurantees the linearity of the torque, and is easily implemented. These attractive are verified through the experiment.

  • PDF

Preparation of Bi$_4$Ti$_3$O$_{12}$ Films by Dipping-Pyrolysis Process (도포 열분해법을 이용한 Bi$_4$Ti$_3$O$_{12}$제조에 관한 연구)

  • 황규석;이형민;김병훈
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.1002-1005
    • /
    • 1998
  • Bismuth titanate thin films were prepared on {{{{ { SrTiO}_{3 } }}(100) and Si(100) substrates by dipping-pyrolysis pro-cess using metal naphthenates as starting materials. crystallinity and in-phase alignment of the films were analyzed by X-ray diffraction $\theta$-2$\theta$ scans and $\beta$ scans (pole-figures) respectively. Highly c-axis-oriented {{{{ { { {Bi }_{4 }Ti }_{3 }O }_{12 } }} thin films with smooth surfaces were obtained after heat treatment at 75$0^{\circ}C$ on {{{{ { SrTiO}_{3 } }}(100) sub-strate while the films grown of Si(100) exhibited polycrstalline characteristics. C-axis oriented film show-ed an epitaxial relationship with the {{{{ { SrTiO}_{3 } }} substrate.

  • PDF

A Generalized Analysis of Volumetric Error of a Machine Tool Machining a Sculpture (자유곡면을 가공하는 공작기계 체적오차의 일반화 해석)

  • 고태조
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.39-47
    • /
    • 1995
  • This paper suggests generalize mathematica mode for the benefit of volumetric error analysis of a multi-axis machine tool machining a sculptured surfaces. The volumetric error, in this paper, is defined as a three dimensional error at the cutting point, which is caused by the geometric errors and the kinematic errors of each axis and alignment errors of the cutting tool. The actual cutting position is analyzed based on the form shaping model including a geometric error of the moving carriage, where a form shaping model is derived from the homogeneous transformation matrix. Then the volumetric error is obtained by calculating the position difference between the actual cutting position and the ideal one calculated from a Nonuniform Rational B-Spline named as NURES. The simulation study shows the effectiveness for predicting the behavior of machining error and for the method of error compensation.

  • PDF