• Title/Summary/Keyword: axial tension

Search Result 302, Processing Time 0.021 seconds

Dynamic Characteristics of the Beam Axially Moving Over Multiple Elastic Supports (다수의 탄성지지대 위를 이동하는 보 구조물의 동특성 해석)

  • 김태형;이우식
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • This paper investigates the dynamic characteristics of a beam axially moving over multiple elastic supports. The spectral element matrix is derived first for the axially moving beam element and then it is used to formulate the spectral element matrix for the moving beam element with an interim elastic support. The moving speed dependance of the eigenvalues is numerically investigated by varying the applied axial tension and the stiffness of the elastic supports. Numerical results show that the fundamental eigenvalue vanishes first at the critical moving speed to generate the static instability.

A new design method for site-joints of the tower crane mast by non-linear FEM analysis

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.343-365
    • /
    • 2019
  • Among the themes related to earthquake countermeasures at construction sites, those for tower cranes are particularly important. An accident involving the collapse of a crane during the construction of a skyscraper has serious consequences, such as human injury or death, enormous repair costs, and significant delays in construction. One of the causes of deadly tower crane collapses is the destruction of the site joints of the tower crane mast. This paper proposes a new design method by static elastoplastic finite element analysis using a supercomputer for the design of the end plate-type tensile bolted joints, which are generally applied to the site joints of a tower crane mast. This new design method not only enables highly accurate and reliable joint design but also allows for a design that considers construction conditions, such as the introduction of a pre-tension axial force on the bolts. By applying this new design method, the earthquake resistance of tower cranes will undoubtedly be improved.

Efficient elastic stress analysis method for piping system with wall-thinning and reinforcement

  • Kim, Ji-Su;Jang, Je-Hoon;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.732-740
    • /
    • 2022
  • A piping system stress analysis need to be re-performed for structural integrity assessment after reinforcement of a pipe with significant wall thinning. For efficient stress analysis, a one-dimensional beam element for the wall-thinned pipe with reinforcement needs to be developed. To develop the beam element, this work presents analytical equations for elastic stiffness of the wall-thinned pipe with reinforcement are analytically derived for axial tension, bending and torsion. Comparison with finite element (FE) analysis results using detailed three-dimensional solid models for wall-thinned pipe with reinforcement shows good agreement. Implementation of the proposed solutions into commercial FE programs is explained.

Considerations of the Initial Crack Damage Effect on the Advanced Idealized Plate Unit (초기균열 손상효과를 고려한 개선된 이상화 판요소)

  • Paik, Jeom-K.;Suh, Heung-W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.86-90
    • /
    • 1994
  • This paper attempts to incorporate the initial crack damage effect into the existing idealized plate unit. For this purpose, a new concept which indicates the equivalent, reduced material properties due to initial cracks at the structural unit level, not at he microscopic aspect, is suggested, and a simplified mechanical plate model for the initially cracked plate in axial tension is formulated as a function of initial crack length, based on the finite-element solutions obtained by crack propagation analysis.

  • PDF

A research on the technique for the vibration analysis of fuid-filled, strength member embedded and semi-infinite cylindrical shell (유체 충진된 반 무한 내심형 원통셸의 진동 해석 기법 연구)

  • Ham, Il-Bae;Bae, Soo-Ryong;Jeong, Weui-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.127-134
    • /
    • 1997
  • Abstract: A technique to analyze the vibrations of internally fluid-filled, semi-infinite cylindrical shell which has strength members embedded in the shell wall under the axial static tension conditon is presented by using the characteristic wave propagation theory based on the transfer matrix calculated from the finite element matrices of a short module section, with spatial Laplace Tranform technique, and is verified by comparison with the measured results of the test performed on a real module model, and the effects of the embedded strength members on the vibrational response is calculated and discussed.

  • PDF

Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling (가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법)

  • Yoon, Won Soon;Lee, Cheol Ho;Kim, Jeong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.523-535
    • /
    • 2014
  • According to the capacity design concept underlying current steel seimsic provisions, the braces in concentrically braced frames should dissipate seismic energy through cyclic tension yielding and compression buckling. On the other hand, the beams and the columns in the braced bay should remain elastic for gravity load actions and additional column axial forces resulting from the brace buckling and yielding. However, due to the difficulty in accumulating the yielding and buckling-induced column forces from different stories, empirical and often conservative approaches have been used in design practice. Recently a totally different approach was proposed by Cho, Lee, and Kim (2011) for the prediction of column axial forces in inverted V-braced frames by explicitly considering brace buckling. The idea proposed in their study is extended to X-braced seismic frames which have structural member configurations and load transfer mechanism different from those of inverted V-braced frames. Especially, a more efficient rule is proposed in combining multi-mode effects on the column axial forces by using the modal-mass based weighting factor. The four methods proposed in this study are evaluated based on extensive inelastic dynamic analysis results.

Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses (축응력 및 횡보강근을 고려한 콘크리트의 전단마찰내력 평가모델)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2016
  • Shear friction strength model of concrete was proposed to explain the direct friction mechanism at the concrete interfaces intersecting two structural elements. The model was derived from a mechanism analysis based on the upper-bound theorem of concrete plasticity considering the effect of transverse reinforcement and applied axial loads on the shear strength at concrete interfaces. Concrete was modelled as a rigid-perfectly plastic material obeying modified Coulomb failure criteria. To allow the influence of concrete type and maximum aggregate size on the effectiveness strength of concrete, the stress-strain models proposed by Yang et al. and Hordijk were employed in compression and tension, respectively. From the conversion of these stress-strain models into rigidly perfect materials, the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction were then mathematically generalized. The proposed shear friction strength model was compared with 91 push-off specimens compiled from the available literature. Unlike the existing equations or code equations, the proposed model possessed an application of diversity against various parameters. As a result, the mean and standard deviation of the ratios between experiments and predictions using the present model are 0.95 and 0.15, respectively, indicating a better accuracy and less variation than the other equations, regardless of concrete type, the amount of transverse reinforcement, and the magnitude of applied axial stresses.

Recognition of Complication of Superficial Brachial Axial Pattern Flap in a Dog (표층상완축상피판이식술과 전층망상식피술의 적용 예)

  • Kim, Se-Hoon;Heo, Su-Young;Cho, Young-Kwon;Lee, Hae-Beom;Lee, Ki-Chang;Kim, Min-Su;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.26 no.6
    • /
    • pp.637-640
    • /
    • 2009
  • A 13-year-old female 30 kg Korean Jin-do dog was presented with severe defects due to vasculitis and perivascular dermatitis at the left antebrachium area. A left superficial brachial axial pattern flap was elevated to cover the defect and the wound was covered. However, one week post surgery, the flap was survived about 1/3 of total flap length. Remaining two thirds defects were performed by the free skin mesh graft as an additional method. After ten days, the entire wound was achieved completely. Skin flaps carry own blood supply in other hands, the flap method is dependent upon continuation of adequate circulation until vascularization takes place. Because they are much thicker than other grafts, this is a slower process and the flap method is vulnerable to problems with kinking or tension of the base. According to this case, a practician has to consider length of flap and thickness in order to vascular perfusion when superficial brachial axial pattern flap is performed in a dog.

Energy Dissipation Capacity of the T-stub Fastened by SMA bars (SMA 강봉으로 체결된 T-stub의 에너지소산능력)

  • Yang, Jae Guen;Baek, Min Chang;Lee, Jae Yun;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.231-240
    • /
    • 2014
  • The T-stub subjected to an axial tensile force shows various behavior characteristics according to the changes in the diameter and tightening force of the fastener, the geometric shape of the T-stub, and the material properties of the T-stub and fastener. Due to the influence of these changes, the T-stub shows three failure modes: plastic failure after the flexural yielding of the T-stub flange, flexural yielding of the T-stub fillet, and fracture of the fastener. In general, a T-stub with a thin flange and where the gauge distance of the fastener is long has a larger energy dissipation capacity than a T-stub with a thick flange and where the gauge distance of the fastener is short, due to the plastic deformation after flexural yielding. In this study, three-dimensional nonlinear finite element analysis was carried out to determine the effect of the fastener used for fastening the T-stub on the energy dissipation capacity of the T-stub. For the fastener of the T-stub analysis model, F10T-M20 high-tension bolts and ${\varnothing}19.05-mm$ (3/4-inch) SMA bars were modeled, and the geometric shape of the T-stub was selected to represent the flexural yielding of the T-stub fillet and the axial tensile failure of the fastener.

Estimation of Prestressed Tension on Grouted PSC Tendon Using Measured Elastic Wave Velocity (응력파속도를 이용한 부착식 PSC 텐던의 긴장력 추정)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo;Lee, Il Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.289-297
    • /
    • 2012
  • This study proposes an experimental formula that can estimate the applied tensile stress of a bonded PSC by measuring a longitudinal stress wave velocity of tendon. To develop practical formula, the various bonded PSC specimens are constructed with different levels of prestresses. For all the bonded PSC specimens, the longitudinal impact-echo tests are repeated with various experimental conditions. Considering a few influence factors such as temperature, length and the number of strands, the application of the law of similarity results in a nondemensional experimental formula that could estimate existing tensile stress on tendon by measuring its longitudinal stress wave velocity. Next, a feasibility study of proposed approach has been conducted for a real reactor building containment. The estimated stress levels of two vertical tendons embedded in the nuclear plant are close to their design values.