• Title/Summary/Keyword: axial tension

Search Result 302, Processing Time 0.024 seconds

Study on stress transition mechanism by tensile and fracture characteristics of membrane material at bolting part in clamping part of membrane Structures (막구조 정착부의 볼트접합부 막재료의 신장 및 파단상태를 통한 응력전달체계에 관한 연구)

  • Kim, Hee-Kyun;Shim, Chun-Bo;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.97-105
    • /
    • 2023
  • The membrane structure should maintain the membrane materials in tension for structural stability guaranty. The anchoring part in the membrane structure is an important part. It has the function to introduce tension into membrane materials and function to transmit stress which membrane materials receives to boundary structure such as steel frames. In this paper, it grasps anchoring system of the anchoring part in the membrane structure concerning the fracturing characteristic condition of membrane structure, and the influence which is caused to yield it designates the stress state when breaking the membrane structure which includes the anchoring part and that stress transition mechanism is elucidated as purpose. This paper follows to previous paper, does 1 axial tensile test concerning the bolting part specimen, grasp of fracturing progress of the bolting part and the edge rope and hardness of the rubber, does the appraisal in addition with the difference of bolt tightening torque. As a result, the influence which the bolt anchoring exerts on the fracturing characteristics of the membrane material in the membrane structure anchoring part is examined.

A Study on the Change of Tensile Force of Friction Type Anchor under Shear Deformation of Ground (지반의 전단변형에 따른 마찰형 앵커의 긴장력 변화에 대한 연구)

  • You, Min-Ku;Kwon, O-Il;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.13-25
    • /
    • 2018
  • When deformation occurs on slope reinforced with anchor, shear stress and bending stress are applied on the shear surface along the slip surface and increase of the shear deformation causes the tension force variation of the anchor. In this study, shear test was performed by measuring the tension force of the anchor by inducing shear deformation in vertical direction of the anchor using a large-scale direct shear test equipment in order to confirm the tension force variation of the anchor induced by shear deformation. The shear test was performed for 8 conditions which were classified according to the anchor reinforcement, separation distance (1D, 2D, 4D) from the shear surface to bonded part and the lateral-pressure condition (0.1 MPa, 0.2 MPa) of adjacent ground. As a result of the shear test, it was found that the separation distance and the lateral-pressure condition affect the shear force of the ground reinforced by anchor and the tension force of the anchor, and experimentally verified that the shear force variation is related to axial force variation of the anchor head and tip. Therefore, it was confirmed that the behavior of the bonded part induced by the shear deformation can be indirectly predicted by analyzing the tendency of the tension force variation of the anchor head.

Structural Characteristics Analysis of Steel Box Girder Bridge being stressed the PS Steel Wires at the Upper Slab of the Intermediate Support (지점부 상부슬래브에 PS강선 긴장된 강 박스거더교의 구조적 특성 분석)

  • Cha, Tae-Gweon;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • The concrete deck slab at the continuous span support of the steel box girder bridge is a structure that is combined with the upper flange. It is a structure that can cause tension cracks in the deck slab at the support causing problems such as durability degradation in long span bridges. This is because the tensile stress in the longitudinal direction of the slab exceeds the design tensile strength due to the effects of dead load and live load when applying a long span. Accordingly, it is necessary to control tensile cracking by adding a reinforcing bar in the axial direction to the slab at the support and to introduce additional compressive stress. To solve this problem, a structural system of a steel box girder bridge was proposed that introduces compressive stress as PS steel wire tension in the tensile stress section of the upper slab in the continuous support. The resulting structural performance was compared and verified through the finite element analysis and the steel wire tension test of the actual specimen. By introducing compressive stress that can control the tensile stress and cracking of the slab generated in the negative moment through the tension of the PS steel wire, it is possible to improve structural safety and strengthen durability compared to the existing steel box girder bridge.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.

Influence of Process Parameters on Residual Stress and Reducing Residual Stress in Drawn Wire (인발 선재의 잔류응력에 미치는 공정변수의 영향 및 잔류응력 완화)

  • Lee S. K.;Hwang W. H.;Kim B. M.;Bae C. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.704-711
    • /
    • 2005
  • The influence of process parameters in drawn wire on residual stresses was investigated. Based on a FE-simulation of the wire drawing process, the effects of process parameters such as semi-die angle, reduction, friction coefficient and bearing length on the residual stresses were investigated. The validity of the FE-simulation results was verified by the comparison of the previous simulated results with experimental data. In this study, semi-die angle and die reduction have significant effect on the residual stresses at the surface of drawn wire. Several methods such as, addition of axial tension, application of skin pass, straightening in multi-roll straightener etc, were suggested in the previous studies to reduce the residual stresses. In this study, the results show that the concurrent application of skin pass with low die reduction and low semi-die angle at the final stage of drawing operation reduces dramatically the both axial and hoop residual stresses after drawing

Stress analysis model for un-bonded umbilical cables

  • Chen, Xiqia;Fu, Shixiao;Song, Leijian;Zhong, Qian;Huang, Xiaoping
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.97-122
    • /
    • 2013
  • For the optimization design and strength evaluation of the umbilical cable, the calculation of cross section stress is of great importance and very time consuming. To calculate the cross section stress under combined tension and bending loads, a new integrated analytical model of umbilical cable is presented in this paper. Based on the Hook's law, the axial strain of helical components serves as the tensile stress. Considering the effects of friction between helical components, the bending stress is divided into elastic bending stress and friction stress. For the former, the elastic bending stress, the curvature of helical components is deduced; and for the latter, the shear stress before and after the slipping of helical components is determined. This new analytical model is validated by the experimental results of an umbilical cable. Further, this model is applied to estimate the extreme strength and fatigue life of the umbilical cable used in South China Sea.

Viscoplastic Solution of Thick Walled Cylinder Considering Axial Constraint (축방향 경계 조건을 고려한 두꺼운 실린더의 점소성 응력해)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1555-1561
    • /
    • 2003
  • Finite element analysis using modern constitutive equation is one of the most general tools to simulate the deformation behavior and to predict the life of the structure. Constitutive equation becomes complicated so as to predict the material behavior more accurately than the classical models. Because of the complexity of constitutive model, numerical treatment becomes so difficult that the calculation should be verified carefully. One-element tests, simple tension or simple shear, are usually used to verify the accuracy of finite element analysis using complicated constitutive model. Since this test is mainly focused on the time integration scheme, it is also necessary to verify the equilibrium iteration using material stiffness matrix and to compare FE results with solution of structures. In this investigation, viscoplastic solution of thick walled cylinder was derived considering axial constraints and was compared with the finite element analysis. All the numerical solutions showed a good coincidence with FE results. This numerical solution can be used as a verification tool for newly developed FE code with complicated constitutive model.

A Study on the Influence of Process Parameters on Residual Stress and Reducing Residual Stress for Drawn Wire Using FE-Analysis (유한요소 해석에 의한 공정변수가 인발 선재의 잔류응력에 미치는 영향평가 및 완화에 관한 연구)

  • Lee S.G.;Hwang W.H.;Kim B.M.;Bae C.M.;Lee C.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.834-837
    • /
    • 2005
  • This study presents a study on the influence of process parameters(semi-die angle, die reduction, friction condition, and bearing length) in drawn wire on residual stresses were investigated using FE-analysis. In this study, semi-die angle and die reduction have a significant effect on the residual stresses at the surface of drawn wire. In the previous study, in order to reduce the residual stresses, several methods were suggested: addition of axial tension, application of skin pass, straightening in multi-roll straightener etc. In this study, it can be known that the concurrent application of skin pass with low die reduction and low semi-die angle at the final stage of drawing operation reduces dramatically the both axial and hoop residual stresses after drawing.

  • PDF

On transverse matrix cracking in composite laminates loaded in flexure under transient hygrothermal conditions

  • Khodjet-Kesba, M.;Benkhedda, A.;Adda Bedia, E.A.;Boukert, B.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.165-173
    • /
    • 2018
  • A simple predicted model using a modified Shear-lag method was used to represent the moisture absorption effect on the stiffness degradation for $[0/90]_{2s}$ composite laminates with transverse cracks and under flexural loading. Good agreement is obtained by comparing the prediction model and experimental data published by Smith and Ogin (2000). The material properties of the composite are affected by the variation of temperature and moisture absorption. The transient and non-uniform moisture concentration distribution give rise to the transient elastic moduli of cracked composite laminates. The hygrothermal effect is taken into account to assess the changes in the normalised axial and flexural modulus due to transverse crack. The obtained results represent well the dependence of the stiffness properties degradation on the cracks density, moisture absorption and operational temperature. The composite laminate with transverse crack loaded in axial tension is more affected by the hygrothermal condition than the one under flexural loading. Through this theoretical study, we hope to contribute to the understanding of the moisture absorption on the composite materials with matrix cracking.

Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength

  • Turk, Kazim;Caliskan, Sinan;Sukru Yildirim, M.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.3
    • /
    • pp.337-346
    • /
    • 2005
  • The paper reports on a study of bond strength between reduced-water-content concrete and tensile reinforcement in spliced mode. Three different diameters (12, 16 and 22 mm) of tensile steel were spliced in the constant moment zone, where there were two bars of same size in tension. For each diameter of reinforcement, a total of nine beams ($1900{\times}270{\times}180mm$) were tested, of which three beams were with no axial force (positive bending) and the other six beams were with axial force (combined bending). The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. It was found that there was a considerable size effect in the experimental results, i.e., as the diameter of the reinforcement reduced the bond strength and the deflection recorded at the midspan increased significantly, whilst the stiffness of the beams reduced. It was also found for all reinforcement sizes that higher bond strength and stiffness were obtained for beams tested in combined bending than that of the beams tested in positive bending only.