• 제목/요약/키워드: axial support excitation

검색결과 6건 처리시간 0.017초

Vibrations of a taut horizontal cable subjected to axial support excitations considering nonlinear quasi-static responses

  • Jiang Yi;Yingqi Liu
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.221-235
    • /
    • 2023
  • To calculate the vibrations of a tout cable subjected to axial support excitations, a nonlinear relationship of cable force and the support displacement under static situations are employed to depict the quasi-static vibration of the cable. The dynamic components of quasi-static vibration are inputted as "direct loads" to cause the parametric vibrations on the cable. Both the governing equations of motion and deformation compatibility for parametric vibrations are then derived, which indicates the high coupling of cable parametric force and deformation. Numerical solutions, based on the finite difference method, are put forward for the parametric vibrations, which is validated by the finite element method under periodic axial support excitations. For the quasi-static response, the shorter cables are more sensitive to support excitations than longer ones at small cable force. The quasi-static cable force makes the greatest contribution to the total cable force, but the parametric cable force is responsible for the occurrence of cable loosening at large excitation amplitudes. Moreover, this study also revealed that the traditional approach, assuming a linear relationship between quasi-static cable force and axial support displacement, would result in some great error of the cable parametric responses.

지진격리 강재 케이블 교량의 다지점 진동대 실험 (Multi-support excitation shaking table test of a base-isolated steel cable-stayed bridge)

  • 김성도;안진희;공영이;최형석;정진환
    • 한국지진공학회논문집
    • /
    • 제19권4호
    • /
    • pp.161-171
    • /
    • 2015
  • A series of tests was conducted for full-scale single-pylon asymmetric cable-stayed bridges using a system of multiple shaking tables. The 2-span bridge length was 28 m, and the pylon height was 10.2 m. 4 different base conditions were considered: the fixed condition, RB (rubber bearings), LRB (lead rubber bearings), and HDRB (high damping rubber bearings). Based on investigation of the seismic response, the accelerations and displacements in the axial direction of the isolated bridge were increased compared to non-isolated case. However, the strain of the pylon was decreased, because the major mode of the structure was changed to translation for the axial direction due to the dynamic mass. The response of the cable bridge could differ from the desired response according to the locations and characteristics of the seismic isolator. Therefore, caution is required in the design and prediction in regard to the location and behavior of the seismic isolator.

다점 단순지지된 연속원통셸의 진동특성에 대한 실험적 고찰 (An Experimental Study on the Vibraton Characteristics of a Continuous Circular Cylindrical Shell with the Multi-simple Support)

  • 이영신;한창환;김근택;김현수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.568-574
    • /
    • 2000
  • This paper presents the vibration characteristics of a continuous circular cylindrical shell multi-simply supported at arbitrary axial positions for searching design parameters. In this modal test the impulse test method is applied to the excitation of experimental model. Natural frequencies are obtained from the peak points of frequency response function(FRF) through frequency analyzer and vibration behaviors are investigated. FE analysis is performed with ANSYS 5.5 to improve the reliability of experimental results. Their results are compared with experimental results. The effect of dynamic characteristics is analyzed for the number of support point on the shell.

  • PDF

Dynamic stability of a viscoelastically supported sandwich beam

  • Ghosh, Ranajay;Dharmavaram, Sanjay;Ray, Kumar;Dash, P.
    • Structural Engineering and Mechanics
    • /
    • 제19권5호
    • /
    • pp.503-517
    • /
    • 2005
  • The parametric dynamic stability of an asymmetric sandwich beam with viscoelastic core on viscoelastic supports at the ends and subjected to an axial pulsating load is investigated. A set of Hill's equations are obtained from the non-dimensional equations of motion by the application of the general Galerkin method. The zones of parametric instability are obtained using Saito-Otomi conditions. The effects of shear parameter, support characteristics, various geometric parameters and excitation force on the zones of instability are investigated.

Investigation on seismic behavior of combined retaining structure with different rock shapes

  • Lin, Yu-liang;Zhao, Lian-heng;Yang, T.Y.;Yang, Guo-lin;Chen, Xiao-bin
    • Structural Engineering and Mechanics
    • /
    • 제73권5호
    • /
    • pp.599-612
    • /
    • 2020
  • A combination of a gravity wall and an anchor beam is widely used to support the high soil deposit on rock mass. In this study, two groups of shaking table test were performed to investigate the responses of such combined retaining structure, where the rock masses were shaped with a flat surface and a curved surface, respectively. Meanwhile, the dynamic numerical analysis was carried out for a comparison or an extensive study. The results were studied and compared between the combined retaining structures with different shaped rock masses with regard to the acceleration response, the earth pressure response, and the axial anchor force. The acceleration response is not significantly influenced by the surface shape of rock mass. The earth pressure response on the combined retaining structure with a flat rock surface is more intensive than the one with a curved rock surface. The anchor force is significantly enlarged by seismic excitation with a main earthquake-induced increment at the first intensive pulse of Wenchuan motion. The value of anchor force in the combined retaining structure with a flat rock surface is generally larger than the one with a curved rock surface. Generally, the combined retaining structure with a curved rock surface presents a better seismic performance.

원심모형실험을 이용한 그룹 삼축 마이크로파일의 동적거동 평가 (Evaluation of the Dynamic Behavior of Inclined Tripod Micropiles Using Dynamic Centrifuge Test)

  • 김윤아;권태혁;김종관;한진태;김재현;안성율
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.93-102
    • /
    • 2023
  • 최근 건축물 구조 기준의 개정으로 말뚝 기초의 내진성능 강화가 강조되고 있음에도 불구하고, 현재 건축물 기초의 내진설계는 비용과 시공상의 어려움으로 충분한 시행이 이루어지지 않고 있다. 본 연구에서는 지진 시 수평 및 수직 하중에 효과적으로 대응할 수 있는 구조로 제안된 삼축 마이크로파일(TMP)의 지진 시 동적 거동을 평가하고자 하였다. 동적 원심모형실험을 통해 설치 각도가 15°인 그룹 삼축 마이크로파일과 설치 각도가 0°인 연직 군말뚝의 가속도, 변위, 휨모멘트, 축력 등의 동적 거동이 비교 분석되었다. 실험 결과에 따르면 가속도와 수평 및 수직 변위 결과를 바탕으로 살펴보았을 때 탁월 주기가 0.5 초 미만인 실지진파 가진 조건에서 경사진 그룹 삼축 마이크로파일의 내진성능은 연직 군말뚝보다 좋거나 비슷한 수준으로 평가된다. 그러나 Sine 2Hz와 같은 장주기의 강한 지진 가진 시에는 경사진 삼축 마이크로파일의 응답이 전반적으로 수직 마이크로파일보다 크게 나타났다. 협소한 공간에서 기존 시설물의 단주기 지진파에 대한 응답을 줄이는 내진보강이 필요한 경우 경사진 삼축 마이크로파일이 수직 마이크로파일의 대안으로 활용 될 수 있을 것으로 판단된다.