• Title/Summary/Keyword: axial stress ratio

Search Result 273, Processing Time 0.021 seconds

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.

Effective torsional strength of axially restricted RC beams

  • Taborda, Catia S.B.;Bernardo, Luis F.A.;Gama, Jorge M.R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.465-479
    • /
    • 2018
  • In a previous study, design charts where proposed to help the torsional design of axially restricted reinforced concrete (RC) beams with squared cross section. In this article, new design charts are proposed to cover RC beams with rectangular cross section. The influence of the height to width ratio of the cross section on the behavior of RC beams under torsion is firstly shown by using theoretical and experimental results. Next, the effective torsional strength of a reference RC beam is computed for several values and combinations of the study variables, namely: height to width ratio of the cross section, concrete compressive strength, torsional reinforcement ratio and level of the axial restraint. To compute the torsional strength, the modified Variable Angle Truss Model for axially restricted RC beams is used. Then, an extensive parametric analysis based on multivariable and nonlinear correlation analysis is performed to obtain nonlinear regression equations which allow to build the new design charts. These charts allow to correct the torsional strength in order to consider the favourable influence of the compressive axial stress that arises from the axial restraint.

Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns

  • Yan, Biao;Gan, Dan;Zhou, Xuhong;Zhu, Weiqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • This paper aims to investigate the axial load behavior and stability strength of square tubed steel-reinforced concrete (TSRC) columns. Unlike concrete filled steel tubular (CFST) column, the outer steel tube of a TSRC column is mainly used to provide confinement to the core concrete. Ten specimens were tested under axial compression, and the main test variables included length-to-width ratio (L/B) of the specimens, width-to-thickness ratio (B/t) of the steel tubes, and with or without stud shear connectors on the steel sections. The failure mode, ultimate strength and load-tube stress response of each specimen were summarized and analyzed. The test results indicated that the axial load carried by square tube due to friction and bond of the interface increased with the increase of L/B ratio, while the confinement effect of tube was just the opposite. Parametric studies were performed through ABAQUS based on the test results, and the feasibility of current design codes has also been examined. Finally, a method for calculating the ultimate strength of this composite column was proposed, in which the slenderness effect on the tube confinement was considered.

An Analytical Study on Encased Steel Composite Columns Fire Resistance According to Axial Force Ratio (화재시 축력비에 따른 매입형 합성기둥의 내화성능에 대한 해석적 연구)

  • Kim, Ye-Som;Choi, Byong-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.97-107
    • /
    • 2020
  • In this study, finite element analysis was carried out through the finite element analysis program (ANSYS) to investigate the fire resistance of composite columns in fire. Transient heat transfer analysis and static structural analysis were performed according to ASTM E 119 heating curve and axial force ratio 0.7, 0.6, 0.5 by applying stress-strain curves according to temperature, and loading heating experiments were carried out under the same conditions. In addition, the nominal compressive strength of the composite column according to the heating time according to the standard(Eurocode 4) was calculated and expressed as the axial force ratio and compared with the analytical and experimental values. Through the analysis, As a result of finite element analysis, the fire resistance time was 180 minutes and similar value to the experimental value was obtained, whereas the fire resistance time 150 minutes and 60 minutes were derived from the axial force ratios 0.6 and 0.7. In addition, it was confirmed that the fire resistance time according to the axial force ratio calculated according to the reference equation (Eurocode 4) was lower than the actual experimental value. However, it was confirmed that the standard(Eurocode 4) was higher than the experimental value at the axial force ratio of 0.7. Accordingly, it is possible to confirm the fire resistance characteristics(time-axial force ratio relationship) of the SRC column at high axial force, and to use the experimental and anaylsis data of the SRC column as the data for verification based on Eurocode.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE STRESS DISTRIBUTION ACCORDING TO THE THREAD DESIGNS AND THE MARGINAL BONE LOSS OF THE IMPLANTS (임프란트 나사형태와 치조골 흡수에 따른 응력분산의 3차원 유한요소법적 분석)

  • Kim, Il-Kyu;Son, Choong-Yul;Jang, Keum-Soo;Cho, Hyun-Young;Baek, Min-Kyu;Park, Sheung-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.30 no.1
    • /
    • pp.60-71
    • /
    • 2008
  • The objective of this study is to evaluate the stress distribution according to the thread design and the marginal bone loss of a single unit dental implant under the axial and offset-axial loading by three dimensional finite element analysis. The implants used had the diameter of 5mm and 4mm with 13mm in length and prosthesis with a conical type which is 6mm in height and 12mm in diameter. The thread designs were triangular, square and buttress. In the three dimensional finite element model with $15\times15\times20mm$ hexahedron and 2mm cortical thickness, implants were placed with crown to root ratio 7:12, 10:9, 13:6 and 16:3. And additionally the axial force of 100N were applied into 0mm, 2mm and 4mm away from the center of the implants. The results were as follows 1. The maximum von-Mises stress in cortical bone was concentrated to cervical area of implant, and in cancellous bone, apical portion. 2. Comparing the von-Mises stresses in cortical bone of 2mm and 4mm offset loading with central axial loading, it were increased to 3 and 5 times in diameter 4mm implant, and 2 and 4 times, in diameter 5mm implant. 3. The square threads were more effective than the triangular and butress as the longer diameter, the offset loading, and the worse crown to root ratio. 4. The von-Mises stresses were relatively stable until crown to root ratio 13:6, but it was suddenly increased at 16:3. From the results of this study, minimum requirement of crown to root ratio of implant is 2:1, and in the respect of crown to root ratio, diameter and offset loading, square threads are more effective than triangular and buttress threads.

Hysteretic Behavior of Reinforced Concrete Columns Confined By Square Steel Tubes. (정방향 STRC 기둥의 자기이력현상 거동)

  • Wang, Xiaoyong;Zhang, Sumei;Lee, Han-Seaung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.430-433
    • /
    • 2006
  • The reinforced concrete column confined by square steel tubes(RCST) is a reinforced column (RC) confined by thin steel tubes which cover over the full length of the column but terminates 15mm from the column's ends. The steel tube is in uniaxial tension stress state and won't buckle when the column sustains axial load. This will highly increase the bearing capacity and ductility of the columns. The hysteretic behavior of four square RCST columns and one square RC column were experimentally studied under constant axial load and lateral cyclic load. The wide-to-thickness (D/t) ratio of RCST columns employed in this research is 75. The main variables of the experiment were axial load ratio and compressive strength of the concrete. Based on the findings in this research, RCST columns exhibits high lateral strength, ductility, and energy dissipation ability.

  • PDF

A Study on Performance Characteristics of an Axial Compressor with the Casing Groove (케이싱 그루브가 존재하는 축류압축기의 성능특성 연구)

  • Choi, Kwang-Jin;Kim, Jin-Hyuk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.2
    • /
    • pp.24-29
    • /
    • 2010
  • This paper presents a study on the performance of NASA Rotor 37 with the casing grooves based on three-dimensional numerical analysis. Reynolds-averaged Navier-Stokes equations are solved on a hexahedral grid with the shear stress transport model as a turbulence closure model. The governing equations are discretized by a finite volume method. The validation of the numerical results is performed through experimental data for the total pressure ratio and the adiabatic efficiency. The investigation for an axial compressor with a smooth casing and the casing grooves is carried out to compare the performance parameters, for example, surge margin and efficiency, etc. The surge margin is improved in the case of the casing grooves while remarkable improvement of the efficiency is not produced. The result shows that the casing groove is beneficial to expand the operating range of NASA Rotor 37.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyun-Chul;Lee, Haeng-Nam;Park, Gil-Moon
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.397-403
    • /
    • 2000
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional $180^{\circ}$ curved duct were experimentally investigated. Experimental studies for air flows were conducted to measure axial velocity and wall shear stress distributions and entrance length in a square-sectional $180^{\circ}$ curved duct by using the LDV with the data acquisition and the processing system. The experiment was conducted in seven sections from the inlet (${\phi}=0^{\circ}$) to the outlet (${\phi}=180^{\circ}$) at $30^{\circ}$ intervals of the duct. The results obtained from the experimentation were summarized as follows ; (1) When the ratio of velocity amplitude ($A_1$) was less than one, there was hardly any velocity change in the section except near the wall and any change in axial velocity distributions along the phase. When the ratio of velocity amplitude ($A_1$) was 0.6, the change rate of velocity was slow. (2) Wall shear stress distributions of turbulent pulsating flow were similar to those of turbulent steady flow. The value of the wall shear stress became minimum in the inner wall aid gradually increased toward the outer wall where it became maximum. (3) The entrance length of turbulent pulsating flow reached near the region of bend angle of $90^{\circ}$, like that of turbulent steady flow. The entrance length was changed by the dimensionless angular frequency (${\omega}^+$).

  • PDF

The uniaxial strain test - a simple method for the characterization of porous materials

  • Fiedler, T.;Ochsner, A.;Gracio, J.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.17-32
    • /
    • 2006
  • The application of cellular materials in load-carrying and security-relevant structures requires the exact prediction of their mechanical behavior, which necessitates the development of robust simulation models and techniques based on appropriate experimental procedures. The determination of the yield surface requires experiments under multi-axial stress states because the yield behavior is sensitive to the hydrostatic stress and simple uniaxial tests aim only to determine one single point of the yield surface. Therefore, an experimental technique based on a uniaxial strain test for the description of the influence of the hydrostatic stress on the yield condition in the elastic-plastic transition zone at small strains is proposed and numerically investigated. Furthermore, this experimental technique enables the determination of a second elastic constant, e.g., Poisson's ratio.

An Experimental Study on Flame Stability and Combustion Characteristics of Coaxial Diffusion Flame (동축분류 확산화염에서 화염안정화와 연소특성에 관한 연구)

  • 유현석;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 1995
  • A study for the flame stability and the combustion characteristics of coaxial diffusion flame was conducted. The fuel employed was natural gas. The experimental variables were rim thickness of fuel tube, blockage ratio of the outer diameter of fuel tube to the inner diameter of air tube, and momentum ratio of fuel to air. It was consequently found that the stability in the neighborhood of the fuel rim depended on the rim thickness, especially in the case of above 3 mm, and that the stable region of the flame extended remarkably due to the formation of recirculation zone above rim. The effect of the blockage ratio on the flame stability was found to be minor in the case of above 3 mm of rim thickness. Between the momentum ratio 2 and 3, the stable flame zone was widely established as well good combustion. With increasing the fuel-air momentum ratio, axial velocity, turbulence intensity, and Reynolds stress increased.