• Title/Summary/Keyword: axial stress and shear strain

Search Result 87, Processing Time 0.023 seconds

A Study on the Microstructure and Anisotropic Mechanical Properties of Oxygen-Free Copper Fabricated by Equal Channel Angular Pressing (ECAP공법으로 제조된 무산소동의 미세조직 및 기계적 성질 이방성에 대한 고찰)

  • Lee, Jaekun;Hong, Younggon;Kim, Hyoungseop;Park, Sunghyuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.492-500
    • /
    • 2019
  • Equal channel angular pressing(ECAP) is a severe plastic deformation technique capable of introducing large shear strain in bulk metal materials. However, if an ECAPed material has an inhomogeneous microstructure and anisotropic mechanical properties, this material is difficult to apply as structural components subjected to multi-axial stress during use. In this study, extruded oxygen-free copper(OFC) rods with a large diameter of 42 mm are extruded through ECAP by route Bc up to 12 passes. The variations in the microstructure, hardness, tensile properties, and microstructural and mechanical homogeneity of the ECAPed samples are systematically analyzed. High-strength OFC rods with a homogeneous and equiaxed-ultrafine grain structure are obtained by the repeated application of ECAP up to 8 and 12 passes. ECAPed samples with 4 and 8 passes exhibit much smaller differences in terms of the average grain sizes on the cross-sectional area and the tensile strengths along the axial and circumferential directions, as compared to the samples with 1 and 2 passes. Therefore, it is considered that the OFC materials, which are fabricated via the ECAP process with pass numbers of a multiple of 4, are suitable to be applied as high-strength structural parts used under multi-axial stress conditions.

Comparative Study on Various Ductile Fracture Models for Marine Structural Steel EH36

  • Park, Sung-Ju;Lee, Kangsu;Cerik, Burak Can;Choung, Joonmo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.259-271
    • /
    • 2019
  • It is important to obtain reasonable predictions of the extent of the damage during maritime accidents such as ship collisions and groundings. Many fracture models based on different mechanical backgrounds have been proposed and can be used to estimate the extent of damage involving ductile fracture. The goal of this study was to compare the damage extents provided by some selected fracture models. Instead of performing a new series of material constant calibration tests, the fracture test results for the ship building steel EH36 obtained by Park et al. (2019) were used which included specimens with different geometries such as central hole, pure shear, and notched tensile specimens. The test results were compared with seven ductile fracture surfaces: Johnson-Cook, Cockcroft-Latham-Oh, Bai-Wierzbicki, Modified Mohr-Coulomb, Lou-Huh, Maximum shear stress, and Hosford-Coulomb. The linear damage accumulation law was applied to consider the effect of the loading path on each fracture surface. The Swift-Voce combined constitutive model was used to accurately define the flow stress in a large strain region. The reliability of these simulations was verified by the good agreement between the axial tension force elongation relations captured from the tests and simulations without fracture assignment. The material constants corresponding to each fracture surface were calibrated using an optimization technique with the minimized object function of the residual sum of errors between the simulated and predicted stress triaxiality and load angle parameter values to fracture initiation. The reliabilities of the calibrated material constants of B-W, MMC, L-H, and HC were the best, whereas there was a high residual sum of errors in the case of the MMS, C-L-O, and J-C models. The most accurate fracture predictions for the fracture specimens were made by the B-W, MMC, L-H, and HC models.

Analysis-oriented model for seismic assessment of RC jacket retrofitted columns

  • Shayanfar, Javad;Omidalizadeh, Meysam;Nematzadeh, Mahdi
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.371-390
    • /
    • 2020
  • One of the most common strategies for retrofitting as-built reinforced concrete (RC) columns is to enlarge the existing section through the application of a new concrete layer reinforced by both steel transverse and longitudinal reinforcements. The present study was dedicated to developing a comprehensive model to predict the seismic behavior of as-built RC jacketed columns. For this purpose, a new sectional model was developed to perform moment-curvature analysis coupled by the plastic hinge method. In this analysis-oriented model, new methodologies were suggested to address the impacts of axial, flexural and shear mechanisms, variable confining pressure, eccentric loading, longitudinal bar buckling, and varying axial load. To consider the effective interaction between core and jacket, the monolithic factor approach was adopted to extent the response of the monolithic columns to that of a respective RC jacket strengthened column. Next, parametric studies were implemented to examine the effectiveness of the main parameters of the RC jacket strategy in retrofitting as-built RC columns. Ultimately, the reliability of the developed analytical model was validated against a series of experimental results of as-built and retrofitted RC columns.

Viscoplastic Solution of Thick Walled Cylinder Considering Axial Constraint (축방향 경계 조건을 고려한 두꺼운 실린더의 점소성 응력해)

  • Yoon, Sam-Son;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1555-1561
    • /
    • 2003
  • Finite element analysis using modern constitutive equation is one of the most general tools to simulate the deformation behavior and to predict the life of the structure. Constitutive equation becomes complicated so as to predict the material behavior more accurately than the classical models. Because of the complexity of constitutive model, numerical treatment becomes so difficult that the calculation should be verified carefully. One-element tests, simple tension or simple shear, are usually used to verify the accuracy of finite element analysis using complicated constitutive model. Since this test is mainly focused on the time integration scheme, it is also necessary to verify the equilibrium iteration using material stiffness matrix and to compare FE results with solution of structures. In this investigation, viscoplastic solution of thick walled cylinder was derived considering axial constraints and was compared with the finite element analysis. All the numerical solutions showed a good coincidence with FE results. This numerical solution can be used as a verification tool for newly developed FE code with complicated constitutive model.

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

An Assessment of a Resilient Modulus Model by Comparing Predicted and Measured Elastic Deformation of Railway Trackbeds (철도노반의 탄성변위 예측 및 측정을 통한 회복탄성계수 모델 평가)

  • Park, Chul-Soo;Kim, Eun-Jung;Oh, Sang-Hoon;Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1404-1414
    • /
    • 2008
  • In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Finite Element Analysis and Fatigue Life Evaluation of Automotive Rubber Insulator (자동차 방진 고무 부품의 유한요소해석 및 피로수명평가)

  • Kim, W.D.;Woo, C.S.;Han, S.W.
    • Elastomers and Composites
    • /
    • v.33 no.3
    • /
    • pp.168-176
    • /
    • 1998
  • A strut rubber insulator is used in a suspension component of passenger cars. The uni-axial tension, compression, and the shear test were performed to acquire the constants of the strain energy functions which were Mooney-Rivlin model and Ogden model. The finite element analysis was executed to evaluate the behavior of deformation and stress distribution by using the commercial finite element code MARC ver K6.2. Also, the fatigue tests were carried out to obtain the fatigue life-load curve. The fatigue failure was initiated at the folded position of rubber, which was the same result predicted by the finite element analysis.

  • PDF

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Prestressed concrete bridges with corrugated steel webs: Nonlinear analysis and experimental investigation

  • Chen, Xia-chun;Bai, Zhi-zhou;Zeng, Yu;Jiang, Rui-juan;Au, Francis T.K.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1045-1067
    • /
    • 2016
  • Concrete bridges with corrugated steel webs and prestressed by both internal and external tendons have emerged as one of the promising bridge forms. In view of the different behaviour of components and the large shear deformation of webs with negligible flexural stiffness, the assumption that plane sections remain plane may no longer be valid, and therefore the classical Euler-Bernoulli and Timoshenko beam models may not be applicable. In the design of this type of bridges, both the ultimate load and ductility should be examined, which requires the estimation of full-range behaviour. An analytical sandwich beam model and its corresponding beam finite element model for geometric and material nonlinear analysis are developed for this type of bridges considering the diaphragm effects. Different rotations are assigned to the flanges and corrugated steel webs to describe the displacements. The model accounts for the interaction between the axial and flexural deformations of the beam, and uses the actual stress-strain curves of materials considering their stress path-dependence. With a nonlinear kinematical theory, complete description of the nonlinear interaction between the external tendons and the beam is obtained. The numerical model proposed is verified by experiments.