• 제목/요약/키워드: axial reinforcement

검색결과 436건 처리시간 0.022초

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

New reinforcement algorithms in discontinuous deformation analysis for rock failure

  • Chen, Yunjuan;Zhu, Weishen;Li, Shucai;Zhang, Xin
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.787-803
    • /
    • 2016
  • DDARF (Discontinuous Deformation Analysis for Rock Failure) is a numerical algorithm for simulating jointed rock masses' discontinuous deformation. While its reinforcement simulation is only limited to end-anchorage bolt, which is assumed to be a linear spring simply. Here, several new reinforcement modes in DDARF are proposed, including lining reinforcement, full-length anchorage bolt and equivalent reinforcement. In the numerical simulation, lining part is assigned higher mechanical strength than surrounding rock masses, it may include multiple virtual joints or not, depending on projects. There must be no embedding or stretching between lining blocks and surrounding blocks. To realize simulation of the full-length anchorage bolt, at every discontinuity passed through the bolt, a set of normal and tangential spring needs to be added along the bolt's axial and tangential direction. Thus, bolt's axial force, shearing force and full-length anchorage effect are all realized synchronously. And, failure criterions of anchorage effect are established for different failure modes. In the meantime, from the perspective of improving surrounding rock masses' overall strength, a new equivalent and tentative simulation method is proposed, it can save calculation storage and improve efficiency. Along the text, simulation algorithms and applications of these new reinforcement modes in DDARF are given.

횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성 (Effects of Transverse Reinforcement on Flexural Strength and Ductility of High-Strength Concrete Columns)

  • 황선경;윤현도;정수영
    • 콘크리트학회논문집
    • /
    • 제14권3호
    • /
    • pp.365-372
    • /
    • 2002
  • 본 연구는 700kgf/$\textrm{cm}^2$ 고강도 콘크리트에서 횡보강근 형태, 체적비 그리고 횡보강근 항복강도에 따른 고강도 콘크리트기둥의 거동을 규명하기 위한 실험연구이다. 기둥은 중심축내력의 30%에 해당하는 일정축력과 수평방향의 반복 휨모멘트를 받는다. 본 연구에서 사용된 변수는 횡보강근 체적비(Ps=1.58, 2.25%), 횡보강근 형태(hoop-type, cross-type, diagonal-type) 그리고 횡보강근 항복강도(fy=5,600, 7,950 kgf/$\textrm{cm}^2$)이다. 실험결과로 모든 기둥의 휨강도는 현행규준의 등가응력블럭에 근거하여 산정된 휨강도보다 낮게 나타났다. 횡보강근을 ACI 규준 요구량보다 42%증가시킨 기둥 시험체는 연성적인 거동을 보였다. 그리고, 본 연구에서 적용한 축력비 0.3 P/PO하에서 고강도급 횡보강근을 사용한 시험체의 연성이 저강도급 횡보강근을 사용한 시험체의 경우보다 같거나 다소 큰 경향을 보이고 있었다.

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • 제7권4호
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

Compressive behavior of steel stirrups-confined square Engineered Cementitious Composite (ECC) columns

  • Zheng, Pan-deng;Guo, Zi-xiong;Hou, Wei;Lin, Guan
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.193-206
    • /
    • 2021
  • Extensive research has been conducted on the basic mechanical property and structural applications of engineered cementitious composites (ECC). Despite the high tensile ductility and high toughness of ECC, transverse steel reinforcement is still necessary to confine ECC for high performance. However, limited research has examined performance of ECC confined with practical amount of transverse reinforcement. This paper presents the results of axial compression tests on 14 square ECC columns and 4 conventional concrete columns (used as control specimens) with transverse reinforcement. The test variables were spacing, configuration (square ties or square and diamond shape ties), and yield strength of stirrups. The test showed that ECC columns confined with steel stirrup had good compressive ductility, and the stirrup spacing had the greatest effect on the compressive performance. The self-confinement effect of ECC results in a more uniform but slower expansion of the whole column compared with CC ones. The test results are then compared against the predictions from a number of existing models for conventional confined concrete. It is indicated that these models fail to predict the axial strains at peak axial stress and the trend of the stress-strain curve of steel stirrups-confined ECC with sufficient accuracy. Several new equations are then proposed for the compressive properties of steel-confined ECC based on test results and potential approaches for future studies are proposed.

Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength

  • Turk, Kazim;Caliskan, Sinan;Sukru Yildirim, M.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.337-346
    • /
    • 2005
  • The paper reports on a study of bond strength between reduced-water-content concrete and tensile reinforcement in spliced mode. Three different diameters (12, 16 and 22 mm) of tensile steel were spliced in the constant moment zone, where there were two bars of same size in tension. For each diameter of reinforcement, a total of nine beams ($1900{\times}270{\times}180mm$) were tested, of which three beams were with no axial force (positive bending) and the other six beams were with axial force (combined bending). The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. It was found that there was a considerable size effect in the experimental results, i.e., as the diameter of the reinforcement reduced the bond strength and the deflection recorded at the midspan increased significantly, whilst the stiffness of the beams reduced. It was also found for all reinforcement sizes that higher bond strength and stiffness were obtained for beams tested in combined bending than that of the beams tested in positive bending only.

Static strength of collar-plate reinforced tubular T-joints under axial loading

  • Shao, Yong-Bo
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.323-342
    • /
    • 2016
  • To study the effect of collar-plate reinforcement on the static strength of tubular T-joints under axial loading, fundamental research work is carried out from both experimental test and finite element (FE) simulation. Through experimental tests on 7 collar-plate reinforced and 7 corresponding un-reinforced tubular T-joints under axial loading, the reinforcing efficiency is investigated. Thereafter, the static strengths of the above 14 models are analyzed by using FE method, and it is found that the numerical results agree reasonably well with the experimental data to prove the accuracy of the presented FE model. Additionally, a parametric study is conducted to analyze the effect of some geometrical parameters, i.e., the brace-to-chord diameter ratio ${\beta}$, the chord diameter-to-chord wall thickness ratio $2{\gamma}$, collar-plate thickness to chord wall thickness ratio ${\tau}_c$, and collar-plate length to brace diameter ratio $l_c/d_1$, on the static strength of a tubular T-joint. The parametric study shows that the static strength can be greatly improved by increasing the collar-plate thickness to chord wall thickness ratio ${\tau}_c$ and the collar-plate length to brace diameter ratio $l_c/d_1$. Based on the numerical results, parametric equations are obtained from curving fitting technique to estimate the static strength of a tubular T-joint with collar-plate reinforcement under axial loading, and the accuracy of these equations is also evaluated from error analysis.

축력과 휨 모멘트를 받는 RC 부재의 CFRP 시트 보강에 따른 성능 평가 (Evaluation of Performance of CFRP Sheet Reinforcement on RC Members Subjected to Axial Load and Flexural Moment)

  • 배찬영;이지형;김상우;김진섭
    • 대한토목학회논문집
    • /
    • 제43권5호
    • /
    • pp.567-576
    • /
    • 2023
  • 일반적으로 RC 보 부재는 휨 부재로서 휨 하중에 대해서만 고려하여 설계된다. 하지만, 실제 건축물에서는 부재 간의 연속성으로 인해 축력과 휨 하중을 동시에 받게 된다. 이로 인해 RC 보 부재의 휨 강도는 증가하지만, 변위는 감소하며, 균열은 주로 보의 중앙부에 집중되게 된다. 따라서 본 연구에서는 축력과 휨 하중을 동시에 받는 RC 보 부재에 탄소섬유시트를 이용한 보강에 따른 휨 성능을 실험적으로 평가하였다. 탄소섬유시트는 부재의 중앙부에 감싸 보강을 하였으며, 축력과 휨 하중을 부재에 가력하였다. 축력의 크기와 탄소섬유시트 보강에 따른 철근콘크리트 부재의 파괴 형태, 휨 강도, 처짐 및 연성을 분석하였다. 그 결과, 축력의 증가에 따라 최대 휨 강도의 상승이 발생하였지만, 연성은 최대 64%까지 감소하였다. 탄소섬유시트 보강을 통해 휨 강도는 최대 27% 증가하였으며, 휨에 의한 보의 최대 처짐은 8% 감소하였으며 연성은 최대 43% 증가하였다.

High-strength RC columns subjected to high-axial and increasing cyclic lateral loads

  • Bhayusukma, Muhammad Y.;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.779-796
    • /
    • 2014
  • This experimental investigation was conducted to examine the behavior and response of high-strength material (HSM) reinforced concrete (RC) columns under combined high-axial and cyclic-increasing lateral loads. All the columns use high-strength concrete ($f_c{^{\prime}}$=100MPa) and high-yield strength steel ($f_y$=685MPa and $f_y$=785MPa) for both longitudinal and transverse reinforcements. A total of four full-scale HSM columns with amount of transverse reinforcement equal to 100% more than that required by earthquake resistant design provisions of ACI-318 were tested. The key differences among those four columns are the spacing and configuration of transverse reinforcements. Two different constant axial loads, i.e. 60% and 30% of column axial load capacity, were combined with cyclically-increasing lateral loads to impose reversed curvatures in the columns. Test results show that columns under 30% of axial load capacity behaved much more ductile and had higher lateral deformational capacity compared to columns under the 60% of axial load capacity. The columns using closer transverse reinforcement spacing have slightly higher ductility than columns with larger spacing.

철근콘크리트 교각 심부구속철근량의 비교연구 (comparative Study on confinement Steel Amount of RC Column Bent)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF