• Title/Summary/Keyword: axial pressure test

Search Result 220, Processing Time 0.021 seconds

Winkler Springs (p-y curves) for pile design from stress-strain of soils: FE assessment of scaling coefficients using the Mobilized Strength Design concept

  • Bouzid, Dj. Amar;Bhattacharya, S.;Dash, S.R.
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.379-399
    • /
    • 2013
  • In practice, analysis of laterally loaded piles is carried out using beams on non-linear Winkler springs model (often known as p-y method) due to its simplicity, low computational cost and the ability to model layered soils. In this approach, soil-pile interaction along the depth is characterized by a set of discrete non-linear springs represented by p-y curves where p is the pressure on the soil that causes a relative deformation of y. p-y curves are usually constructed based on semi-empirical correlations. In order to construct API/DNV proposed p-y curve for clay, one needs two values from the monotonic stress-strain test results i.e., undrained strength ($s_u$) and the strain at 50% yield stress (${\varepsilon}_{50}$). This approach may ignore various features for a particular soil which may lead to un-conservative or over-conservative design as not all the data points in the stress-strain relation are used. However, with the increasing ability to simulate soil-structure interaction problems using highly developed computers, the trend has shifted towards a more theoretically sound basis. In this paper, principles of Mobilized Strength Design (MSD) concept is used to construct a continuous p-y curves from experimentally obtained stress-strain relationship of the soil. In the method, the stress-strain graph is scaled by two coefficient $N_C$ (for stress) and $M_C$ (for strain) to obtain the p-y curves. $M_C$ and $N_C$ are derived based on Semi-Analytical Finite Element approach exploiting the axial symmetry where a pile is modelled as a series of embedded discs. An example is considered to show the application of the methodology.

Reproduction of Cyclic Triaxial Behavior of Unsaturated Soil using Element Simulation (요소 시뮬레이션에 의한 불포화토의 반복삼축거동 재현)

  • Lee, Chungwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.5-14
    • /
    • 2015
  • Suction affects the unsaturated soil as the negative pore pressure, and leads to increases of the yield stress and the plastic shear stiffness of the soil skeleton due to the growth in interparticle stress. Hence, in this study, in order to account for these effects of suction under the dynamic loading condition such as the earthquake, the element simulation of the cyclic triaxial test using induced stress-strain relation based on cyclic elasto-plastic constitutive model extended for unsaturated soil considering the $1^{st}$ and the $2^{nd}$ yield functions was conducted. Through the stress path, stress-strain relation and relation between volumetric strain and axial strain, it was seen in all the cases that the simulation results demonstrated a good agreement with the experimental results. It is expected that the results of this study possibly contribute to the accuracy improvement on the prediction of unsaturated soil behavior under the dynamic loading condition.

Choked Surge in a Cavitating Turbopump Inducer

  • Watanabe, Toshifumi;Kang, Dong-Hyuk;Cervone, Angelo;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.64-75
    • /
    • 2008
  • During an experimental investigation on a 3-bladed and a 4-bladed axial inducer, a severe surge instability was observed in a range of cavitation number where the blade passage is choked and the inducer head is decreased from noncavitating value. The surge was stronger for the 4-bladed inducer as compared with a 3-bladed inducer with the same inlet and outlet blade angles. For the 4-bladed inducer, the head decreases suddenly as the cavitation number is decreased. The surge was observed after the sudden drop of head. This head drop was found to be associated with a rapid extension of tip cavity into the blade passage. The cause of surge is attributed to the decrease of the negative slope of the head-flow rate performance curve due to choke. Assuming that the difference between the 3 and 4-bladed inducers is caused by the difference of the blockage effects of the blade, a test was carried out by thickening the blades of the 3-bladed inducer. However, opposite to the expectations, the head drop became smoother and the instability disappeared on the thickened blade inducer. Examination of the pressure distribution on both inducers could not explain the difference. It was pointed out that two-dimensional cavitating flow analyses predict smaller breakdown cavitation number at higher flow rates, if the incidence angle is smaller than half of the blade angle. This causes the positive slope of the performance curve and suggests that the choked surge as observed in the present study might occur in more general cases.

Measurements of Turbulent Flow In a$6\times{6}$ Rod Bundle with Spacer Grids (지지격자를 갖는 $6\times{6}$ 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 1996
  • The local hydraulic characteristics in a single phase flow of a 6$\times$6 rod bundle with neighboring different spacer grids were measured by using a LDV(Laser Doppler Velocimeter) system. 6$\times$6 rod bundle is formed by two 3$\times$6 rod bundles with different spacer grids. The objective of this study in a rod bundle is to investigate the thermal-hydraulic interactions between different spacer grids with different configurations and resistance. By using a LDV system, the velocity and turbulent intensity in axial and horizontal directions ore measured. Pressure drop measurements ore also performed to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. Implications concerning thermal mining due to spacer grids were investigated based on the hydraulic test results. Swirl factor, which is assumed as a qualitative criteria for DNB(departure from nucleate boiling), was defined and estimated from the horizontal velocity result.

  • PDF

A Study on Load Bearing Capacity of Composite Member with Steel Rib and Shotcrete in NATM Tunnel (NATM 터널에서 강지보와 숏크리트 합성부재의 하중지지력에 관한 연구)

  • Moon, Sang Hwa;Shin, Young Wan;Kim, Seung Hwan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5C
    • /
    • pp.221-229
    • /
    • 2012
  • Steel ribs such as H-beam or lattice girder are often reinforced to secure the stability of NATM tunnel when the ground is in the bad condition. When designing, however, steel ribs are not often taken into consideration on the numerical analysis when they are regarded as temporary tunnel supports until shotcrete shows its best performance or if they are, there are various modeling methods. This study shows behavior and loading capacity of steel ribs and shotcrete through the strength test on the bending, pressure and full-scaled. Also, we conducted and analyzed the experiment of composite member consisting of shotcrete and steel ribs under the same condition. Through the result, we can find the fact that shotcrete and steel ribs do not work as one unit because of slipping on the boundary. Also, when numerical analyzing, it was concluded that steel ribs cover all bending moment and shotcrete and steel ribs share with axial force according to the compressive strength.

In-situ Stress Measurement Using AE and DRA (AE와 DRA를 이용한 초기응력의 측정에 관한 연구)

  • Park, Pae-Han;Jeon, Seok-Won;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • In-situ stress measurement using AE (Acoustic Emission) and DRA (Deformation Rate Analysis) is usually carried out under uniaxial loading in the laboratory and it consumes delay time from drilling to testing. Therefore, it should be considered how the lateral stress and delay time influence on the test results for the in-situ stress determination. As the delay time increased, the accuracy of estimating the pre-stress decreased. The pre-stress of the specimen loaded only axially was determined within an error of less than 9% (using AE) and 4% (using DRA). And the specimen on which axial pre-stress and the confining pressure were loaded had an error of less than 17% (using AE) and 14% (using DRA). The results of AE and DRA for field specimens were very similar with each other but smaller than those of hydraulic fracturing method.

  • PDF

An Experimental Study on Silty Clay Subjected to Repeated Loads (반복하중을 받는 실트질 점토에 관한 실험적 연구 -과압밀 점토를 중심으로-)

  • Kim, Pal-Gyu;Kim, Gyeong-Jin;Song, Jeon-Seop
    • Geotechnical Engineering
    • /
    • v.5 no.4
    • /
    • pp.37-46
    • /
    • 1989
  • The object of this paper is to study the general characteristics of overconsolidated silty clays subjected to repeated loading. The samples are first remolded. overconsolidated and a series of strain - controlled triaxial repeated tests are carried out. Generally the relationship of deviator stress - axial strain of overconsolidated clay is similar in pattern to the normally consolidated clay under single load. But the behavior of the pore water pressure build up in the sample subjected to repeated loading is dependent upon the consolidation history and the level of repeated stress. Therefore through the series of the tests, the characteristics of stress -strain relationship of soils which are differentlly overconsolidated are investigated, analysed and then compared with each soils. And also, from the relationship of test results, the strength and strain characteristics of soils are obierved. The equilibrium lines which presents the critical repeated stress and equilibrium state in the sample under repeated loading, are often straight, but may be curved. And the tendency of the equilibrium lines is observed as to the variation of overconsolidation ratio.

  • PDF

Development of An Integrated Optimal Design Program for Design of A High-Efficiency Low-Noise Regenerative Fan (재생형 송풍기의 고효율 저소음 설계를 위한 통합형 최적설계 프로그램 개발)

  • Heo, Man-Woong;Kim, Jin-Hyuk;Seo, Tae-Wan;Koo, Gyoung-Wan;Lee, Chung-Suk;Kim, Kwang-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • A multi-objective optimization of a regenerative fan for enhancing the aerodynamic and aeroacoustic performance was carried out using an integrated fan design system, namely, Total FAN-Regen$^{(R)}$. The Total FAN-Regen$^{(R)}$ was developed for non-specialists to carry out a series of design process, viz., computational preliminary design, three-dimensional aerodynamic and aeroacoustic analyses, and design optimization, for a regenerative fan. An aerodynamic analysis of the regenerative fan was conducted by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. And, an aeroacoustic analysis of the regenerative fan was implemented in a finite/infinite element method by solving the variational formulation of Lighthill's analogy based on the results of the unsteady flow analysis. An optimum shape obtained by Total FAN-Regen$^{(R)}$ shows the enhanced efficiency and decreased sound pressure level as much as 1.5 % and 20.0 dB, respectively, compared to those of the reference design. The performance test was carried out for an optimized regenerative fan to validate the performance of the numerically predicted optimal design.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

Analysis and Design of Shoes Using Non-Linear Finite Element Method (비선형 유한요소법을 이용한 신발 해석 및 설계)

  • Kim, B.S.;Moon, B.Y.
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.195-205
    • /
    • 2003
  • This paper presents an analytic method and a design technique for golf shoes with air-cycled pump in the midsole. The golf shoes are modeled using the finite element method for better design by considering the configuration of the midsole and the outsole, which compose the golf shoes. Also the optimum size and shape of air-cycled pump in the midsole is examined. The values or standard human pressure for boundary conditions are adopted for the FEA(Finite Element Analysis). The unknown constants of the strain energy function of Ogden type are observed in accordance with the axial tension test. By the commercial FEM software for nonlinear analysis, MARC V7.3, the strains and the values of volume change for the midsole and the outsole are obtained, respectively. It can be concluded that results obtained by FEM in the midsole and the outsole are different depending on the characteristic of elastomer The results reported herein provide better understanding of analyzing the golf shoes. Moreover, it is believed that those properties of the results can be utilized in the shoes industry to develop the effective design method.