• 제목/요약/키워드: axial porous burner

검색결과 3건 처리시간 0.017초

The comparison of radial and axial flow porous burners from viewpoint of output radiative heat transfer and emissions

  • Tabari, N. Ghiasi;Astaraki, M.R.;Arabi, A.H.
    • Coupled systems mechanics
    • /
    • 제1권3호
    • /
    • pp.285-295
    • /
    • 2012
  • In this paper, two types of porous burners with radial and axial flow have been modeled numerically and compared. For this purpose, governing equations were solved one-dimensionally for methane-air premix gas. The mechanism used in simulating combustion phenomenon was 15 stage reduced mechanism based on GRI3.0. In order to compare the two burners, the inlet flow rate and fuel-air ratio have been assumed equal for the two burners. The results of the study indicated that reduction in speed and increase in cross-section area in the direction of flow have a considerable influence on the behavior of radial burner in comparison to axial burner. Regarding temperature distribution inside the burner, it was observed that the two above mentioned factors can be influential in temperature of flame propagation region. Also, regarding distribution of CO and NO emission, the results indicate that the porous radial burner has lower emissions in comparison to the axial once. The output radiative heat transfer efficiency of the two burners was also compared and in this case also even the radial porous burner was found to be preferable.

외부증착공정(OVD)에서 열전달 및 입자부착에 관한 실험적 연구 (An experimental study of heat transfer and particle deposition during the outside vapor deposition process)

  • 김재윤;조재걸
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3063-3071
    • /
    • 1995
  • An experimental study has been carried out for the heat transfer and particle deposition during the Outside Vapor Deposition process. The surface temperatures of deposited layers, and the rates, efficiencies and porosities of particle deposition were measured. It is shown that the axial variation of the surface temperature can be assumed to be quasi-steady and that as the traversing speed of burner is increased, the deposition rate, efficiency and porosity increase due to the decreased surface temperature. As the flow rate of the chemicals is increased, both the thickness of deposition layers and the surface temperature increase. Deposition rate also increases, however, deposition efficiency decreases for tests done. Later passes in early deposition stage result in higher surface temperatures due to increased thickness of porous deposited layers, which cause the deposition rate, efficiency, and porosity to decrease.

소규모 반응로를 이용한 감압 잔사유지 연소실험 (The Experimental Studies of Vacuum Residue Combustion in a Small Scale Reactor)

  • 박호영;김영주;김태형;서상일
    • 에너지공학
    • /
    • 제14권4호
    • /
    • pp.268-276
    • /
    • 2005
  • 액체연료(중유)공급량 기준 20kg/hr규모의 반응로에서 증기분무 내부 혼합식 노즐을 이용하여 잔사유의 연소실험을 수행하였다. 본 실험에서 사용한 감압 잔사유는 점도가 높고 황함량, 잔류탄소와 금속성분의 함량도 높았다. 잔사유의 착화를 위해서는 반응로를 일정온도까지 예열하여야 했으며 이는 LPG를 이용하였다. 잔사유 공급량을 변화시키면서 축방향 및 반경방향의 로내 가스 온도, 주요 가스농도 및 채집된 고체 입자를 분석하였다. 잔사유의 주반응영역은 버너 팁으로부터 약 1 m 근방에서 형성되었으며 이는 축방향 가스 온도, 농도 분포 및 입자의 크기로부터 확인할 수 있었고, 반응로의 하류에서는 완전 확립된 온도분포를 보여주고 있었다. 고체 입자의 SEM 분석으로부터 잔류 탄소입자는 기공이 많은 형태를 띠고 있었다.