• 제목/요약/키워드: axial loads

검색결과 731건 처리시간 0.028초

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

콘크리트의 축압축강도에 대한 크기효과 (Size Effect on Axial Compressive Strength of Concrete)

  • 이성태;김민욱;김진근
    • 콘크리트학회논문집
    • /
    • 제13권2호
    • /
    • pp.153-160
    • /
    • 2001
  • 본 연구에서는 콘크리트 부재에서의 축압축강도에 대한 크기효과를 검토하였다. 이를 위하여 두 가지 대표적인 압축파괴모드 중의 하나인 모드 I 파괴에 대한 실험적 연구를 이중 캔틸레버 보를 이용하여 수행하였다. 각 캔틸레버의 축에 대한 작용하중의 편심거리와 초기 균열길이를 변화시킴에 의하여 콘크리트의 축압축강도에도 크기효과가 존재하는 지의 여부를 확인하였고, 최소자승법을 이용하여 수정된 크기효과법칙의 새로운 실험상수들을 제시하였다. 연구결과로부터 초기 균열이 있는 콘크리트 부재의 축압축강도에도 크기효과가 존재함을 확인하였다. 하중의 편심거리에 있어서는 균열선단에서의 인장과 압축응력의 영향이 매우 중요하며 이 경우에 뚜렷한 크기효과가 나타났다. 즉 균열선단에서 인장응력의 영향이 증가하면 콘크리트의 크기효과는 증가한다. 그러나 초기 균열길이의 경우, 축압축강도의 크기효과에 미치는 영향은 존재하지만 균열길이에 따른 차이는 뚜렷하지 않았는데 이는 고강도 콘크리트 부재의 경우 부재의 세장비 차에도 불구하고 파괴진행영역의 크기가 서로 비슷한데 그 원인이 있는 것으로 판단된다.

사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 - (Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results -)

  • 이원제;김채민;윤도균;최용규
    • 한국지반공학회논문집
    • /
    • 제35권9호
    • /
    • pp.29-36
    • /
    • 2019
  • 직경 500mm 및 직경 600mm PHC말뚝 A종의 파괴 압축하중($P_n$)은 각각 7.7MN 및 10.6MN으로 계산할 수 있었다. 직경 500mm 및 직경 600mm 매입 PHC말뚝 A종에 대한 압축정재하시험 시 말뚝 두부에 재하된 최대 압축하중은 6.9MN 및 8.8MN으로 측정할 수 있었으며 따라서 이 측정하중은 각각 $P_n$의 90% 및 83% 수준이었다. 직경 500mm 및 직경 600mm PHC말뚝 A종의 장기허용압축하중($P_a$)은 각각 1.7MN 및 2.3MN이었다. 모든 사례 매입 PHC말뚝의 양방향재하시험 자료로부터 계산된 지반의 허용지지력은 국내 현행 설계에서 사용하고 있는 극한지지력 산정공식으로 계산한 지반의 허용지지력보다 높은 수준으로 계산되었다. 따라서 매입 PHC말뚝의 설계에서 사용하는 극한지지력 산정공식은 매입 PHC말뚝의 실제 지지력 거동을 모사할 수 있도록 개선하여야 할 것으로 판단되었다.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Analytical study of elastic lateral-torsional buckling of castellated steel beams under combined axial and bending loads

  • Saoula Abdelkader;Abdelrahmane B. Benyamina;Meftah Sid Ahmed
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.343-356
    • /
    • 2024
  • This paper presents an analytical solution for correctly predicting the Lateral-Torsional Buckling critical moment of simply supported castellated beams, the solution covers uniformly distributed loads combined with compressive loads. For this purpose, the castellated beam section with hexagonal-type perforation is treated as an arrangement of double "T" sections, composed of an upper T section and a lower T section. The castellated beam with regular openings is considered as a periodic repeating structure of unit cells. According to the kinematic model, the energy principle is applied in the context of geometric nonlinearity and the linear elastic behavior of materials. The differential equilibrium equations are established using Galerkin's method and the tangential stiffness matrix is calculated to determine the critical lateral torsional buckling loads. A Finite Element simulation using ABAQUS software is performed to verify the accuracy of the suggested analytical solution, each castellated beam is modelled with appropriate sizes meshes by thin shell elements S8R, the chosen element has 8 nodes and six degrees of freedom per node, including five integration points through the thickness, the Lanczos eigen-solver of ABAQUS was used to conduct elastic buckling analysis. It has been demonstrated that the proposed analytical solution results are in good agreement with those of the finite element method. A parametric study involving geometric and mechanical parameters is carried out, the intensity of the compressive load is also included. In comparison with the linear solution, it has been found that the linear stability underestimates the lateral buckling resistance. It has been confirmed that when high axial loads are applied, an impressive reduction in critical loads has been observed. It can be concluded that the obtained analytical solution is efficient and simple, and offers a rapid and direct method for estimating the lateral torsional buckling critical moment of simply supported castellated beams.

Use of vibration characteristics to predict the axial deformation of columns

  • Moragaspitiya, H.N. Praveen;Thambiratnam, David P.;Perera, Nimal J.;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.73-88
    • /
    • 2014
  • Vibration characteristics of columns are influenced by their axial loads. Numerous methods have been developed to quantify axial load and deformation in individual columns based on their natural frequencies. However, these methods cannot be applied to columns in a structural framing system as the natural frequency is a global parameter of the entire framing system. This paper presents an innovative method to quantify axial deformations of columns in a structural framing system using its vibration characteristics, incorporating the influence of load tributary areas, boundary conditions and load migration among the columns.

대형 회전기 Axial Magnetic Force 해석 (The Analysis of the Axial Magnetic Force for Large Rotating Machines)

  • 이정일;김기찬;권중록;제준모
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.827-829
    • /
    • 2004
  • A characteristic of the rotating machine that has been receiving relatively little attention is the axial force on the rotor versus its axial displacement from magnetic neutral position. A knowledge of this force is essential to the economic application of thrust bearings for rotating machine and their connected loads. In this paper this axial force is analyzed and calculated and test values are verified with two different machines.

  • PDF

Stability and minimum bracing for stepped columns with semirigid connections: Classical elastic approach

  • Aristizabal-Ochoa, J. Dario
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.415-431
    • /
    • 1997
  • Stability equations that evaluate the elastic critical axial load of stepped columns under extreme and intermediate concentrated axial loads in any type of construction with sidesway totally inhibited, partially inhibited and uninhibited are derived in a classical manner. These equations can be utilized in the stability analysis of framed structures (totally braced, partially braced, and unbraced) with stepped columns with rigid, semirigid, and simple connetions. The proposed column classification and the corresponding stability equations overcome the limitations of current methods which are based on a classification of braced and unbraced columns. The proposed stability equations include the effects of: 1) semirigid connections; 2) step variation in the column cross section at the point of application of the intermediate axial load; and 3) lateral and rotational restraints at the intermediate connection and at the column ends. The proposed method consists in determining the eigenvalue of a $2{\times}2$ matrix for a braced column at the two ends and of a $3{\times}3$ matrix for a partially braced or unbraced column. The stability analysis can be carried out directly with the help of a pocket calculator. The proposed method is general and can be extended to multi-stepped columns. Various examples are include to demonstrate the effectiveness of the proposed method and to verify that the calculated results are exact. Definite minimum bracing criteria for single stepped columns is also presented.

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

일정가속도(一定加速度)의 이동하중(移動荷重)과 축하중(軸荷重)이 작용(作用)하는 유한(有限)보의 동특성(動特性) (Dynamic Characteristics of a Finite Beam Subjected to an Axial Force and Moving Loads with Constant Acceleration)

  • 홍동표
    • 대한토목학회논문집
    • /
    • 제2권3호
    • /
    • pp.67-74
    • /
    • 1982
  • 일정가속도(一定加速度)의 이동하중(移動荷重)과 축하중(軸荷重)이 작용(作用)하는 탄성기초(彈性基礎)위에 지지(支持)된 유한(有限)보의 동특성(動特性)을 연구(硏究)하였다. Euler보 이론(理論)을 이용(利用)하여 공간좌표(空間座標)에 관(關)하여는 Fourier 변환(變換)을 하고 시간(時間)에 관(關)하여는 Laplace 변환(變換)을 하여 해(解)를 구(求)하였다. 이론해석(理論解析) 결과(結果)에 포함(包含)된 적분(積分)은 Simpson's Rule에 의하여 구(求)하였다. 이론해석(理論解析) 결과(結果)로부터 보의 동특성(動特性)은 가속도(加速度)와 축하중(軸荷重)에 의하여 크게 영향(影響)을 받는다는 것을 밝혔다.

  • PDF