• Title/Summary/Keyword: axial loads

Search Result 729, Processing Time 0.026 seconds

Buckling Analysis of laminated composite Cylindrical shells under Axial Compression (축압축하중을 받는 복합적층원통셸의 좌굴해석)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.36-41
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Buckling of Laminated Composite Cylindrical Shells under Axial Compression (축압추하중을 받는 복합재료원통셸의 좌굴)

  • 원종진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.112-116
    • /
    • 1998
  • The objective of this study is to investigate effects of prebuckling on the buckling of laminated composite cylindrical shells. Axial compression is considered for laminated composite cylindrical shells with length to radius ratios. The shell walls are made of a laminate with several symmetric ply orientations. This study was made using finite difference energy method, utilizing the nonlinear bifurcation branch with nonlinear prebuckling displacements. The results are compared to the buckling loads determined when membrane prebuckling displacements are considered.

  • PDF

Forced vibration of nanorods using nonlocal elasticity

  • Aydogdu, Metin;Arda, Mustafa
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.265-279
    • /
    • 2016
  • Present study interests with the longitudinal forced vibration of nanorods. The nonlocal elasticity theory of Eringen is used in modeling of nanorods. Uniform, linear and sinusoidal axial loads are considered. Dynamic displacements are obtained for nanorods with different geometrical properties, boundary conditions and nonlocal parameters. The nonlocal effect increases dynamic displacement and frequency when compared with local elasticity theory. Present results can be useful for modeling of the axial nanomotors and nanoelectromechanical systems.

Effect of Edge Confinement on Deformation Capacity in the Isolated R/C Structural Walls (전단벽의 단부보강효과에 따른 변형능력의 평가)

  • 이희동;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.525-528
    • /
    • 1998
  • This paper reports on tests of reinforced concrete shear walls for wall-type apartment structure under axial loads and the cyclic reversal of lateral loads with different confinement of the boundary elements. Confinement of the extreme element by U-stirrups and tie hooks seems to be as effective as closed stirrups. The shear strength capacity seems not to be increased by the confinement but deformation capacity improved.

  • PDF

Numerical Analysis of Reinforce Concrete Structures Using Axial Deformation Link Elements (축방향 변형 요소를 이용한 RC 부재의 해석적 연구)

  • 신승교;허우영;임윤묵;김문겸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.475-478
    • /
    • 1999
  • A numerical tool for predicting the behavior of reinforced concrete structures under uniaxial loads is proposed. Concrete is considered as quasi-brittle material, and for a reinforcing bar, an elastic-perfectly plastic constitutive relationship is adopted. In this study, the behavior of reinforced concrete according to the interface properties between the concrete and steel is analyzed. Comparisons between the numerical predictions and the experimental results show good agreements in the load-deflection behaviors and ultimate loads of reinforced concrete structures.

  • PDF

Wave load resistance of high strength concrete slender column subjected to eccentric compression

  • Jayakumar, M.;Rangan, B.V.
    • Structural Engineering and Mechanics
    • /
    • v.50 no.3
    • /
    • pp.287-304
    • /
    • 2014
  • A computer based iterative numerical procedure has been developed to analyse reinforced high strength concrete columns subjected to horizontal wave loads and eccentric vertical load by taking the material, geometrical and wave load non-linearity into account. The behaviour of the column has been assumed, to be represented by Moment-Thrust-Curvature relationship of the column cross-section. The formulated computer program predicts horizontal load versus deflection behaviour of a column up to failure. The developed numerical model has been applied to analyse several column specimens of various slenderness, structural properties and axial load ratios, tested by other researchers. The predicted values are having a better agreement with experimental results. A simplified user friendly hydrodynamic load model has been developed based on Morison equation supplemented with a wave slap term to predict the high frequency non-linear impulsive hydrodynamic loads arising from steep waves, known as ringing loads. A computer program has been formulated based on the model to obtain the wave loads and non-dimensional wave load coefficients for all discretised nodes, along the length of column from instantaneous free water surface to bottom of the column at mud level. The columns of same size and material properties but having different slenderness ratio are analysed by the developed numerical procedure for the simulated wave loads under various vertical thrust. This paper discusses the results obtained in detail and effect of slenderness in resisting wave loads under various vertical thrust.

Approximate formulation for bifurcation buckling loads of axially compressed cylindrical shells with an elastic core

  • Sato, Motohiro;Shimazaki, Kenta
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.313-320
    • /
    • 2011
  • This paper proposes an approximate formulation to estimate the bifurcation buckling loads of cylindrical shells with soft elastic cores under the conditions of axial compression. In general, thin-walled, axially compressed cylindrical shells buckle into a diamond pattern in the elastic range. However, buckling symmetrical with respect to the axis of the cylinder may occur when the cylindrical shell is supported by an elastic medium. By considering this characteristic, we introduce the simplified approximate formulation that can give sufficiently accurate results for the bifurcation buckling loads of cylindrical shells. Moreover the results are compared with the exact buckling loads in order to confirm the accuracy of the proposed approximate formulation.

Free Vibrations and Buckling Loads of Column with Clamped-Spring Ends and Constant Volume (고정-스프링 일정체적 기둥의 자유진동 및 좌굴하중)

  • Yoon, Hee-Min;Lee, Tae-Eun;Park, Kwang-Kyu;Lee, Byoung-Koo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.117-120
    • /
    • 2007
  • This study deals with the free vibrations and buckling loads of column with clamped-spring ends and constant volume. The column has the regular polygon cross-section whose depth is varied with the linear functional fashion. The differential equation governing the free vibration of such column is derived in which the effect of axial load is included. The differential equation is solved numerically for calculating frequencies. By using the relationship between loads and frequencies, the buckling loads are also obtained.

  • PDF

Benefits of Puddling of Fiber Reinforced UHSC for Enhanced Transmission of Column Loads

  • Lee, Joo-Ha;Kim, Gyu-Dong;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.75-78
    • /
    • 2005
  • This study reports on the structural characteristics of slab-column connections using an ultra-high-strength-fiber-reinforced concrete. Compression tests were performed on two slab-column and four isolated column specimens. During the column load tests were performing on the slab-column specimens, the slab loads were also applied to consider actual confinement condition at the slab-column joint. The main parameter investigated was the ' puddling ' of ultra-high-strength-fiber-reinforced concrete. This paper also investigates the effects of some parameters on slab-column specimens and isolated column specimens without the surrounding slab for their ability to transmit axial loads from the ultra-high-strength concrete columns through slab-column connections. The beneficial effects of the ultra-high-strength-fiber-reinforced concrete puddling on the transmission of column loads through slab-column connections are demonstrated.

  • PDF

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.