• Title/Summary/Keyword: axial loading capacity

Search Result 301, Processing Time 0.021 seconds

Numerical Analysis of Pile-Soil Interaction under Axial and Lateral Loads

  • Khodair, Yasser;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.239-249
    • /
    • 2014
  • In this paper, the analysis of a numerical study of pile-soil interaction subjected to axial and lateral loads is presented. An analysis of the composite pile-soil system was performed using the finite difference (FD) software LPILE. Two three dimensional, finite element (FE) models of pile-soil interaction have been developed using Abaqus/Cae and SAP2000 to study the effect of lateral loading on pile embedded in clay. A lateral displacement of 2 cm was applied to the top of the pile, which is embedded into the concrete pile cap, while maintaining a zero slope in a guided fixation. A comparison between the bending moments and lateral displacements along the depth of the pile obtained from the FD solutions and FE was performed. A parametric study was conducted to study the effect of crucial design parameters such as the soil's modulus of elasticity, radius of the soil surrounding the pile in Abaqus/Cae, and the number of springs in SAP2000. A close correlation is found between the results obtained by the FE models and the FD solution. The results indicated that increasing the amount of clay surrounding the piles reduces the induced bending moments and lateral displacements in the piles and hence increases its capacity to resist lateral loading.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Infilled steel tubes as reinforcement in lightweight concrete columns: An experimental investigation and image processing analysis

  • N.Divyah;R.Prakash;S.Srividhya
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Under constant and cyclic axial compression, square composite short columns reinforced with Self Compacting Concrete (SCC) added with scrap rubber infilled inside steel tubes and with different types of concrete were cast and tested. The test is carried out to find the effectiveness of utilizing an aggregate manufactured from industrial waste and to address the problems associated with the need for alternative reinforcements along with waste management. The main testing parameters are the type of concrete, the effect of fiber inclusion, and the significance of rubber-infilled steel tubes. The failure modes of the columns and axial load-displacement curves of the steel tube-reinforced columns were all thoroughly investigated. According to the test results, all specimens failed due to compression failure with a longitudinal crack along the loading axis. The fiber-reinforced column specimens demonstrated improved ductility and energy absorption. In comparison to the normal-weight concrete columns, the lightweight concrete columns significantly improved the axial load-carrying capacity. The addition of basalt fiber to the columns significantly increased the yield stress and ultimate stress to 9.21%. The corresponding displacement at yield load and ultimate load was reduced to 10.36% and 28.79%, respectively. The precision of volumetric information regarding the obtained crack quantification, aggregates, and the fiber in concrete is studied in detail through image processing using MATLAB environment.

Investigation of shear transfer mechanisms in repaired damaged concrete columns strengthened with RC jackets

  • Achillopoulou, D.V;Karabinis, A.I
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.575-598
    • /
    • 2013
  • The study presents the results of an experimental program concerning the shear force transfer between reinforced concrete (RC) jackets and existing columns with damages. In order to investigate the effectiveness of the repair method applied and the contribution of each shear transfer mechanism of the interface. It includes 22 concrete columns (core) (of 24,37MPa concrete strength) with square section (150mm side, 500 mm height and scale 1:2). Ten columns had initial construction damages and twelve were subjected to initial axial load. Sixteen columns have full jacketing at all four faces with 80mm thickness (of 31,7MPa concrete strength) and contain longitudinal bars (of 500MPa nominal strength) and closed stirrups spaced at 25mm, 50mm or 100mm (of 220MPa nominal strength). Fourteen of them contain dowels at the interface between old and new concrete. All columns were subjected to repeated (pseudo-seismic) axial compression with increasing deformation cycles up to failure with or without jacketing. Two load patterns were selected to examine the difference of the behavior of columns. The effects of the initial damages, of the reinforcement of the interface (dowels) and of the confinement generated by the stirrups are investigated through axial- deformation (slip) diagrams and the energy absorbed diagrams. The results indicate that the initial damages affect the total behavior of the column and the capacity of the interface to shear mechanisms and to slip: a) the maximum bearing load of old column is decreased affecting at the same time the loading capacity of the jacketed element, b) suitable repair of initially damaged specimens increases the capacity of the jacketed column to transfer load through the interface.

Composite action of concrete-filled double circular steel tubular stub columns

  • Wang, Liping;Cao, Xing-xing;Ding, Fa-xing;Luo, Liang;Sun, Yi;Liu, Xue-mei;Su, Hui-lin
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.77-90
    • /
    • 2018
  • This paper presents a combined numerical, experimental, and theoretical study on the behavior of the concrete-filled double circular steel tubular (CFDT) stub columns under axial compressive loading. Four groups of stub column specimens were tested in this study to find out the effects of the concrete strength, steel ratio and diameter ratio on the mechanical behavior of CFDT stub columns. Nonlinear finite element (FE) models were also established to study the stresses of different components in the CFDT stub columns. The change of axial and transverse stresses in the internal and external steel tubes, as well as the change of axial stress in the concrete sandwich and concrete core, respectively, was thoroughly investigated for different CFDT stub columns with the same steel ratio. The influence of inner-to-outer diameter ratio and steel ratio on the ultimate bearing capacity of CFDT stub columns was identified, and a reasonable section configuration with proper inner-to-outer diameter ratio and steel ratio was proposed. Furthermore, a practical formula for predicting the ultimate bearing capacity was proposed based on the ultimate equilibrium principle. The predicted results showed satisfactory agreement with both experimental and numerical results, indicating that the proposed formula is applicable for design purposes.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Experimental Study on the Compressive Strength of yLRC Composite Columns (yLRC 합성기둥의 압축강도에 관한 실험 연구)

  • Kim, Hyung Geun;Kim, Myeong Han;Cho, Nam Gyu;Kim, Sang Seup;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.545-552
    • /
    • 2009
  • An experimental study was performed on the yLRC composite column. Its external surface was manufactured with y-shape steel sheets and L-shape steel angles, and concrete was poured inside in the field. This composite column has improved the section capacity due to the composite action of steel and concrete, and provides good efficiency in reducing the terms of construction works because of its abridged formworks. The stub column specimens (three small and three large specimens) were tested through concentrical axial loading, and the effect of the width-to-thickness ratio of the steel angle on the column axial strength was examined. The axial strength and behavior of the composite columns were analyzed, and a formula for predicting the axial load capacity was proposed.

Compressive behavior of galvanized steel wire mesh (GSWM) strengthened RC short column of varying shapes

  • Marthong, Comingstarful
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • In a reinforced concrete building different shapes of column are adopted depending on the structural orientation and the architectural aspect. When there is an increase in loading due to changes in usage or revision in the design codes these columns need to be strengthened for enhanced performance during their service life. Strengthening materials such as carbon fiber and glass fiber polymer has been successfully used however, due to high cost application other alternative materials need to be explore. Galvanized steel wire mesh (GSWM) is one of the suitable materials locally available. High tensile strength, low weight, corrosion resistance, easy installation, minimum change in dimensions of the sections and cost effectives are the advantages of GSWM. Therefore, in this paper, four different shapes of column such as circular, square, rectangular and L were wrapped with different layers GSWM and jacketed with mortar. All the specimens were tested under axial compression. The objective of the study is to investigate the effectiveness of GSWM as a confining material for strengthening of column having varying shape. Test results shows that the axial strength enhanced with wrapping of GSWM jacket and a circular column presented the highest load carrying capacity and ductility as compared to the others. From the study of 22 column specimens, it is found that axial load is increased upto 20% and 19% when circular and square column are strengthened with one wrap of GSWM respectively, while a rectangular and L column required a wraps of two and three layers respectively in order to achieved the same load capacity as that of a circular column. Based on the present study, it is concluded that GSWM can be effectively used for strengthening of different shapes of concrete columns economically.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates

  • Wang, L.;Su, R.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.163-185
    • /
    • 2013
  • The use of post-compressed plates (PCP) to strengthen preloaded reinforced concrete (RC) columns is an innovative approach for alleviating the effects of stress-lagging between the original column and the additional steel plates. Experimental and theoretical studies on PCP-strengthened RC columns have been presented in our companion papers. The results have demonstrated the effectiveness of this technique for improving the strength, deformability and ductility of preloaded RC columns when subjected to axial or eccentric compression loading. An original and comprehensive design procedure is presented in this paper to aid engineers in designing this new type of PCP-strengthened RC column and to ensure proper strengthening details for desirable performance. The proposed design procedure consists of five parts: (1) the estimation of the ultimate load capacity of the strengthened column, (2) the design of the initial pre-camber displacement of the steel plate, (3) the design of the vertical spacing of the bolts, (4) the design of the bearing ends of the steel plates, and (5) the calculation of the tightening force of the bolts. A worked example of the design of a PCP-strengthened RC column is shown to demonstrate the application of the proposed design procedure.