• Title/Summary/Keyword: axial loading capacity

Search Result 301, Processing Time 0.03 seconds

Flexural Behavior of Concrete Filled Seismic Resistant Steel Tubular Columns Subjected to Axial and Cyclic Lateral Load (축력과 반복수평력을 받는 콘크리트 충전 내진 각형강관 기둥의 휨거동 특성)

  • Kim, Byung-Ho;Shim, Hyun-Ju;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.317-326
    • /
    • 2011
  • Today there is a growing range of applications for Concrete-Filled Steel Tube (CFT) member because of its superior performance. Ductility estimation test of concrete-filled seismic resistant steel tubular columns, subjected to axial and cyclic lateral load, was carried out in this study. Seismic resistant steel tubes are manufactured using SN400B plates by a two-seam welding at center of the column width for cold press-formed shape plates of two pieces. A total of eight specimens were manufactured and tested with the parameters of width-thickness ratio of steel tubular column, axial load ratio, and loading conditions to act axial and cyclic lateral load two dynamic actuators were used. From test results, flexural strength, deformation capacity, energy dissipation capacity, and ductility behavior of columns were analyzed.

Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets

  • Raza, Ali;Khan, Qaiser uz Zaman;Ahmad, Afaq
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.383-400
    • /
    • 2020
  • Due to higher stiffness to weight, higher corrosion resistance, higher strength to weight ratios and good durability, concrete composite structures provide many advantages as compared with conventional materials. Thus, they have wide applications in the field of concrete construction. This research focuses on the structural behavior of steel-tube CFRP confined concrete (STCCC) columns under axial concentric loading. A nonlinear finite element analysis (NLFEA) model of STCCC columns was simulated using ABAQUS which was then, calibrated for different material and geometric models of concrete, steel tube and CFRP material using the experimental results from the literature. The comparative study of the NLFEA predictions and the experimental results indicated that the proposed constitutive NLFEA model can accurately predict the structural performance of STCCC columns. After the calibration of NLFEA model, an extensive parametric study was performed to examine the effects of different critical parameters of composite columns such as; (i) unconfined concrete strength, (ii) number of CFRP layers, (iii) thickness of steel tube and (iv) concrete core diameter, on the axial load capacity. Furthermore, a large database of axial strength of 700 confined concrete compression members was developed from the previous researches to give an analytical model that predicts the ultimate axial strength of composite columns accurately. The comparison of the predictions of the proposed analytical model was done with the predictions of 216 NLFEA models from the parametric study. A close agreement was represented by the predictions of the proposed constitutive NLFEA model and the analytical model.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

Confinement coefficient of concrete-filled square stainless steel tubular stub columns

  • Ding, Fa-xing;Yin, Yi-xiang;Wang, Liping;Yu, Yujie;Luo, Liang;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.337-350
    • /
    • 2019
  • The objective of this paper is to investigate the confinement coefficient of concrete-filled square stainless steel tubular (CFSSST) stub columns under axial loading. A fine finite 3D solid element model was established, which utilized a constitutive model of stainless steel considering the strain-hardening characteristics and a triaxial plastic-damage constitutive model of concrete with features of the parameter certainty under axial compression. The finite element analysis results revealed that the increased ultimate bearing capacity of CFSSST stub columns compared with their carbon steel counterparts was mainly due to that the composite action of CFSSST stub columns is stronger than that of carbon steel counterparts. A further parametric study was carried out based on the verified model, and it was found that the stress contribution of the stainless steel tube is higher than the carbon steel tube. The stress nephogram was simplified reasonably in accordance with the limit state of core concrete and a theoretical formula was proposed to estimate the ultimate bearing capacity of square CFSSST stub columns using superposition method. The predicted results showed satisfactory agreement with both the experimental and FE results. Finally, the comparisons of the experimental and predicted results using the proposed formula and the existing codes were illustrated.

Mechanical behavior of steel tube encased high-strength concrete composite walls under constant axial load and cyclically increasing lateral load: Experimental investigation and modeling

  • Liang Bai;Huilin Wei;Bin Wang;Fangfang Liao;Tianhua Zhou;Xingwen Liang
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • This paper presented an investigation into steel tubes encased high-strength concrete (STHC) composite walls, wherein steel tubes were embedded at the boundary elements of high-strength concrete walls. A series of cyclic loading tests was conducted to evaluate the failure pattern, hysteresis characteristics, load-bearing capacity, deformability, and strain distribution of STHC composite walls. The test results demonstrated that the bearing capacity and ductility of the STHC composite walls improved with the embedding of steel tubes at the boundary elements. An analytical method was then established to predict the flexural bearing capacity of the STHC composite walls, and the calculated results agreed well with the experimental values, with errors of less than 10%. Finally, a finite element modeling (FEM) was developed via the OpenSees program to analyze the mechanical performance of the STHC composite wall. The FEM was validated through test results; additionally, the influences of the axial load ratio, steel tube strength, and shear-span ratio on the mechanical properties of STHC composite walls were comprehensively investigated.

Axial behavior of square CFST encased seawater sea-sand concrete filled PVC/GFRP tube columns

  • Rong Su;Xian Li;Ziwei Li
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.781-794
    • /
    • 2023
  • In order to directly apply seawater and sea sand in construction without desalination, a type of square concrete-filled steel tube (CFST) encased with prefabricated seawater sea-sand concrete filled Polyvinyl Chloride (PVC)/Glass Fiber Reinforced Polymer (GFRP) tube column was proposed. Twenty short columns were tested under uniaxial loads, and the test parameters included inner tube types, seawater sea-sand concrete replacement ratios, concrete strength, the wrapping area of Carbon Fiber Reinforced Polymer (CFRP) strips and the thickness of GFRP tube. The effects of the parameters on failure modes, loading capacity, ductility and strain responses were discussed. All the tested specimens failed with serious buckling of the steel tubes and fracture of the inner tubes. The specimens had good residual bearing capacity corresponding to 64% to 88.9% of the peak capacity. The inner GFRP tubes and PVC tubes wrapped by CFRP strips provided stronger confinement to the core concrete, and were good choices for the proposed columns. Moreover, an analytical model for the composite column with different inner tube types was proposed.

Dynamic punching shear tests of flat slab-column joints with 5D steel fibers

  • Alvarado, Yezid A.;Torres, Benjamin;Buitrago, Manuel;Ruiz, Daniel M.;Torres, Sergio Y.;Alvarez, Ramon A.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.281-292
    • /
    • 2022
  • This study aimed to analyze the dynamic punching shear performance of slab-column joints under cyclic loads with the use of double-hooked end (5D) steel fibers. Structural systems such as slab-column joints are widely found in infrastructures. The susceptibility to collapse of such structures when submitted to seismic loads is highly dependent on the structural performance of the slab-column connections. For this reason, the punching capacity of reinforced concrete (RC) structures has been the subject of a great number of studies. Steel fibers are used to achieve a certain degree of ductility under seismic loads. In this context, 5D steel hooked fibers provide high levels of fiber anchoring, tensile strength and ductility. However, only limited research has been carried out on the performance under cyclic loads of concrete structural members containing steel fibers. This study covers this gap with experimental testing of five different full-scale subassemblies of RC slab-column joints: one without punching reinforcement, one with conventional punching reinforcement and three with 5D steel fibers. The subassemblies were tested under cyclic loading, which consisted of applying increasing lateral displacement cycles, such as in seismic situations, with a constant axial load on the column. This set of cycles was repeated for increasing axial loads on the column until failure. The results showed that 5D steel fiber subassemblies: i) had a greater capacity to dissipate energy, ii) improved punching shear strength and stiffness degradation under cyclic loads; and iii) increased cyclic loading capacity.

Novel NSM configuration for RC column strengthening-A numerical study

  • Gurunandan, M.;Raghavendra, T.
    • Computers and Concrete
    • /
    • v.27 no.5
    • /
    • pp.437-445
    • /
    • 2021
  • Retrofitting of structures has gained importance over the recent years. Particularly, Reinforced Cement Concrete (RCC) column strengthening has become a challenge to the structural engineers, owing to the risks and complexities involved in it. There are several methods of RCC column strengthening viz. RCC jacketing, steel jacketing and Fiber Reinforced Polymer (FRP) wrapping etc., FRP wrapping is the most promising alternative when compared to the others. The large research database shows FRP wrapping, through lateral confinement, improves the axial load carrying capacity of the columns under concentric loading. However, its confining efficiency reduces under eccentric loading. Hence a relative newer technique called Near Surface Mounting (NSM), in which Carbon FRP (CFRP) strips are epoxy grouted to the precut grooves in the cover concrete of the columns, has been thrust domain of research. NSM technique strengthens the column nominally under concentric load case while significantly under eccentric case. A novel configuration of NSM in which the vertical NSM (VNSM) strips are being connected by horizontal NSM (HNSM) strips was numerically investigated under both concentric and eccentric loading. It was found that the configuration with 6 HNSM strips performed better under eccentric loading than under concentric loading, while the configuration with 3 HNSM strips performed better under concentric loading than under eccentric loading. Hence an optimum of 4 HNSM strips is recommended as strengthening measure for the given column specifications. It was also found that Aluminum alloy cannot be used instead of CFRP in NSM applications owing to its lower mechanical properties.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.249-260
    • /
    • 2017
  • In order to investigate the structural performance of a novel prefabricated-SRC column using bolt-connected steel angles(PSRC column), eccentric axial loading tests were performed for six PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and eccentricity ratio of axial load. The test results showed that, due to high axial-stiffness of the angles located at the corners of the cross section, the compressive load-carrying capacity and deformation capacity of the PSRC specimens were greater than those of the SRC specimens in the large eccentricity ratio of axial load. Closely spaced lateral steel plates and Z-shaped lateral steel plates improved lateral confinement, which increased the load-carrying capacity of the PSRC specimens. The combined flexural and axial load-carrying capacity of the specimens by tests and nonlinear numerical analysis were greater than the predictions by current design codes. The numerical analysis agreed well with the test results including the initial stiffness, peak strength, and post-peak strength degradation.