• 제목/요약/키워드: axial load effect

검색결과 545건 처리시간 0.024초

철근콘크리트 기둥에서 반복횡력에 대한 헤드형 횡보강근의 구속효과에 대한 실험연구 (Experimental Study on the Confinement Effect of Headed Cross Tie in RC Column Subjected to Cycling Horizontal Load)

  • 서수연;함주호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권5호
    • /
    • pp.1-10
    • /
    • 2012
  • 본 연구는 철근콘크리트 기둥 횡보강근의 형태 특히 크로스타이의 유무 및 단부 정착형태에 따른 내진성능을 평가하기 위한 실험연구이다. 계획된 실험변수인 크로스타이의 유무, 크로스타이의 단부 정착형태(헤드형 또는 갈고리형), 그리고 기둥 축응력의 크기에 따라 총 5개의 기둥 실험체를 제작한 뒤 일정 축력하에 횡방향 반복가력 실험을 수행한 후, 크로스타이가 철근콘크리트 기둥의 구조성능에 미치는 영향을 평가하였다. 실험으로부터, 크로스타이가 없이 띠철근만으로 횡보강된 기둥은, 낮은 횡력에서 균열과 함께 띠철근이 휨변형한 뒤 코아 콘크리트가 탈락되는 파괴양상을 보인 반면에 크로스타이가 있는 기둥은 균열이 발생한 이후에도 띠철근이 휨변형과 주근좌굴을 억제하고 코아 콘크리트를 효과적으로 구속하여 내력 및 연성을 증진시키는 것으로 나타났다. 횡방향 대변형시, 갈고리형 크로스타이는 $90^{\circ}$ 갈고리 부분이 펴지면서 코아 콘크리트가 탈락되는 양상을 보이지만 헤드형 크로스타이는 대변형 시에도 헤드가 매우 효과적으로 띠철근과 주근을 구속하여 높은 내력과 연성능력을 발휘하는 것으로 나타났다.

기하학적 초기형상결함을 갖는 보강 원통의 충격좌굴 신뢰성 해석 (Impact Buckling Reliability Analysis of Stiffened Cylinder With Initial Geometric Imperfection)

  • 김두기
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.735-747
    • /
    • 1996
  • In this paper, buckling reliability analyses of stiffened cylinder with random initial geometric imperfection under axial impact load are performed by the combined response surface method. The effect of random geometric imperfection on the failure probability and reliability is recognized quantitatively. Buckling reliability decreases with the increase of mean value, cov of initial geometric imperfection under the same external load. Buckling probability under impact load is greater than those under static load with the same condition. From the probabilistic characteristics of imapct buckling load, relation between reliability index and safety parameter can be obtained in addition to the relation between load and reliability index. And those results can be used to determine the range of required safety parameter and acceptable imperfaction.

  • PDF

압축 종동 예하중이 요추 인대에 미치는 영향과 요통과의 관계 (The Effect of a Compressive Follower Pre-load on the Ligament of Lumbar Spine and the Relationship with Low Back Pain)

  • 문창현;정태은;신효철
    • 한국자동차공학회논문집
    • /
    • 제18권6호
    • /
    • pp.63-69
    • /
    • 2010
  • A noble model of the whole lumbar spine (L1~L5) considering all the passive elements, especially the ligaments of the lumbar spine was developed. The purpose of this study was to investigate the relationship between the shear stress of the AVB and the ALL and the effect of a compressive follower pre-load on all ligaments with various motions. The result shows that the shear stress at the AVB and the ALL are positively correlated. This indicates that the shear stress of the ligament can be used an index of low back pain. Regarding the effect of a follower pre-load, contrary to our expectation, the shear stress of the ligaments was not always reduced by applying follower pre-load; flexion was decreased and axial rotation did not change, while extension and lateral bending were increased.

Experimental and AI based FEM simulations for composite material in tested specimens of steel tube

  • Yahui Meng;Huakun Wu;ZY Chen;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.475-485
    • /
    • 2024
  • The mechanical behavior of the steel tube encased high-strength concrete (STHC) composite walls under constant axial load and cyclically increasing lateral load was studied. Conclusions are drawn based on experimental observations, grey evolutionary algorithm and finite element (FE) simulations. The use of steel tube wall panels improved the load capacity and ductility of the specimens. STHC composite walls withstand more load cycles and show more stable hysteresis performance than conventional high strength concrete (HSC) walls. After the maximum load, the bearing capacity of the STHC composite wall was gradually reduced, and the wall did not collapse under the influence of the steel pipe. For analysis of the bending capacity of STHC composite walls based on artificial intelligence tools, an analysis model is proposed that takes into account the limiting effect of steel pipes. The results of this model agree well with the test results, indicating that the model can be used to predict the bearing capacity of STHC composite walls. Based on a reasonable material constitutive model and the limiting effect of steel pipes, a finite element model of the STHC composite wall was created. The finite elements agree well with the experimental results in terms of hysteresis curve, load-deformation curve and peak load.

Soil Nail로 보강된 현장타설말뚝의 적용성 및 보강효과 분석 (Application and its reinforcing effect of soil nailed-drilled shafts)

  • 정상섬;김병철;이대수;김대홍;김대학
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.50-57
    • /
    • 2004
  • In this study reinforcing effect of soil nailed-drilled shafts subjected to axial and lateral loads were evaluated. Special attention was given to the reinforcing effects of soil nails placed from the drilled shafts to surrounding weathered- and soft-rocks based on model tests, numerical analyses and load tests. The model tests and numerical analyses are conducted to analyze the reinforcing effect of various conditions of number, inclination, position and length. The results of 1/40 scale model tests and numerical analyses show that as the number of reinforcing level increases, the incremental effect of reinforcement tends to increase, whereas the reinforcing effect on relative position is negligible. In addition there is a reinforcing effect as the inclination angle increaes up to 30 degrees. Based on the results of tensile load tests, soil nailed-drilled shafts has a considerably smaller settlement to reach the ultimate level when compared with the result of un-reinforced drilled shafts. For compression tests, there is a reinforcing effect of about 200% measured.

  • PDF

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

탄성반력의 영향에 따른 직교 이방성 복합판의 고유 진동 해석 (Vibration Analysis of Orthortopic Composite Plate According to Elastic Reaction Effect)

  • 정영화;심도식;김경진;이세진
    • 산업기술연구
    • /
    • 제17권
    • /
    • pp.199-204
    • /
    • 1997
  • In this paper, the result of application of vibration method to the orthotropic plates with free edges supported on elastic foundation and with a pair of opposite edges under axial forces is presented. Such plates represent the concrete highway slab and hybrid composite pavement of bridges. The reinforced concrete slab can be assumed as a special orthotropic plate, as a close approximation. The highway slab is supported on elastic foundation, with free boundaries. Sometimes, the pair of edges perpendicular to the traffic direction may be subject to the axial forces. The plate is subject to the concentrated load/loads, in the form of traffic loads, or the test equipments. Finite difference method is used to obtain the deflection influence surfaces needed for vibration analysis. The influence of the modulus of the foundation, the aspect ratio of the plate, and the magnitudes of the axial forces and the concentrated attached mass on the plate, under the natural frequency is thoroughly studied.

  • PDF

고리형 내부 보강재를 가진 X형 관이음부의 축방향 강도 평가 (Axial Strength Evaluation for Tubular X-Joints with Internal Ring Stiffener)

  • 조현만;류연선;김정태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.162-169
    • /
    • 2001
  • Tubular joints are usually reinforced using thicker can section or ring stiffeners to increase the load carrying capacity. In this paper, a numerical study has been performed for evaluation of axial strength for X-joints with internal ring stiffener, The finite element analysis software was used for nonlinear strength analysis. According to variation of ring geometries, the effect of ring stiffener for X-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of thickness of ring and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.