• 제목/요약/키워드: axial load capacity ratio

검색결과 230건 처리시간 0.027초

Research on seismic performance of regionally confined concrete circular column with trapezoid stirrups

  • Longfei Meng;Hao Su;Yanhua Ye;Haojiang Li
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.587-600
    • /
    • 2024
  • In order to investigate the seismic performance of regionally confined concrete circular column with trapezoid stirrups (TRCCC) under high axial compression ratio, the confinement mechanism of regionally confined concrete was analyzed. Three regionally confined concrete circular columns with trapezoid stirrups were designed, and low cyclic loading tests were conducted at three different axial compression ratios (0.9, 1.1, 1.25) to study the failure mode, hysteresis curve, skeleton curve, deformation capacity, stiffness degradation and energy dissipation capacity of the specimens. The results indicate that the form of regional confinement concrete provides more uniform confinement to the normal confinement, and the confinement efficiency at the edges is 1.4 times that of normal confined concrete. The ductility coefficients of the specimens were all greater than 3 under high axial compression ratios, and the stiffness and horizontal bearing capacity increased with the increase of axial compression ratio. Therefore, it is recommended that the code of design specifications can appropriately relax the axial compression ratio limit for TRCCC. Finally, the spacing between stirrups of TRCCC was analyzed using ABAQUS software. The results showed that as the spacing between the stirrups decreased, the cracking load and peak load of TRCCC increased continuously, but the rate of increase decreases.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

Compressive performance of RAC filled GFRP tube-profile steel composite columns under axial loads

  • Ma, Hui;Bai, Hengyu;Zhao, Yanli;Liu, Yunhe;Zhang, Peng
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.335-349
    • /
    • 2019
  • To investigate the axial compressive performance of the recycled aggregate concrete (RAC) filled glass fiber reinforced polymer (GFRP) tube and profile steel composite columns, static loading tests were carried out on 18 specimens under axial loads in this study, including 7 RAC filled GFRP tube columns and 11 RAC filled GFRP tube-profile steel composite columns. The design parameters include recycled coarse aggregate (RCA) replacement percentage, profile steel ratio, slenderness ratio and RAC strength. The failure process, failure modes, axial stress-strain curves, strain development and axial bearing capacity of all specimens were mainly analyzed in detail. The experimental results show that the GFRP tube had strong restraint ability to RAC material and the profile steel could improve the axial compressive performance of the columns. The failure modes of the columns can be summarized as follow: the profile steel in the composite columns yielded first, then the internal RAC material was crushed, and finally the fiberglass of the external GFRP tube was seriously torn, resulting in the final failure of columns. The axial bearing capacity of the columns decreased with the increase of RCA replacement percentage and the maximum decreasing amplitude was 11.10%. In addition, the slenderness ratio had an adverse effect on the axial bearing capacity of the columns. However, the strength of the RAC material could effectively improve the axial bearing capacity of the columns, but their deformability decreased. In addition, the increasing profile steel ratio contributed to the axial compressive capacity of the composite columns. Based on the above analysis, a formula for calculating the bearing capacity of composite columns under axial compression load is proposed, and the adverse effects of slenderness ratio and RCA replacement percentage are considered.

고축력과 반복횡력을 받는 고강도 R/C기둥의 횡보강근 효과 (An Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and High-Axail Force)

  • 신성우;안종문
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.3-10
    • /
    • 1999
  • Earthquake resistant R/C frame structures are generally designed to prevent the columns from plastic hinging. R/C columns under higher axial load or strong earthquake showed a brittle behavior due to the deterioration of strength and stiffness degradation. An experimental study was conducted to examine the behavior and to find the relationship between amounts of lateral reinforcements and compressive strength of ten R/C column specimens subjected to reversed cyclic lateral load and higher axial load. Test results are follows : An increase in the amount of lateral reinforcement results in a significant improvement in both ductility and energy dissipation capacities of columns. R/C columns with sub-tie provide the improved ductility capacity than those with closely spaced lateral reinforcement only. While the load resisting capacity of the high strength R/C columns is higher than the normal strength concrete columns under both an identical ratio of lateral reinforcement, however the ductility capacity of high strength R/C columns is decreased considerably. Therefore, the amounts of lateral reinforcement must be designed carefully to secure the sufficient ductility and economic design of HSC columns under higher axial load.

반복 횡하중을 받는 철근콘크리트 교각의 내진성능에 관한 실험적 연구 (An Experimental Study on Seismic Performance of Reinforced Concrete Bridge Columns under Lateral Cyclic Load)

  • 이진옥;윤현도;황선경;류효진;나홍성;이경준
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.161-164
    • /
    • 2003
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement ($P_s$ =0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/$P_o$). Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/$P_o$) less than 0.2, the ratio of $M_{max}$ over $M_{aci}$, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF

반복하중을 받는 콘크리트충전 각형강관 보-기둥의 거동 (Behavior of Concrete-Filled Square Tubular Beam-Column under Cyclic Load)

  • 강창훈;문태섭
    • 한국강구조학회 논문집
    • /
    • 제12권4호통권47호
    • /
    • pp.387-395
    • /
    • 2000
  • 본 연구는 콘크리트충전 각형강관(CFT) 기둥의 강도와 변형능력의 평가 및 내진성능에 대한 기초 자료의 제시를 목적으로 한다. 실험체는 초고층 건물의 최하단기둥의 응력분포를 가정하여 켄틸레버형 기둥으로 하고, 총 18개의 실험체가 일정 축력과 반복 횡하중 하에서 실험되었다. 본 실험에 적용된 주요변수는 강관의 폭/두께 비, 세장비 (LO/D), 그리고 축력비이다. 각 변수가 기둥의 강도, 변형능력, 그리고 에너지 흡수능력에 미치는 영향이 기술되었고, 각국 규준식과 실험결과를 비교하였다. 분석결과, 피복형 한국강구조학회 규준은 합성 단면적과 탄성계수를 AIJ와 AISC-LRFD 수준으로 수정한다면, 충전형에도 적용가능 할 것으로 판단된다. 마지막으로, 구속효과를 고려하여 단면의 소성해석을 통하여 구한 B. Kato의 CFT 기둥의 휨내력 제안식은 실험결과와 좋은 대응을 나타내고 있다.

  • PDF

차량용 고무 및 금속 V-벨트 CVT의 변속비-부하토크-축력특성과 성능비교 (Comparison of speed ratio-torque load-axial force characteristics and their performance for automotive rubber and metal V-belt CVT)

  • 김현수;김광원
    • 오토저널
    • /
    • 제12권3호
    • /
    • pp.9-20
    • /
    • 1990
  • The speed ratio-torque load-axial force characteristics of a rubber V-belt (RVB) and a metal V-belt (MVB) CVT are investigated and their performances are compared. It is found that power is transmitted by tension difference in RVB, and by thrust difference in MVB. The nondimensional equations for speed ratio-torque load-axial force of RVB are exactly same as those of MVB. However, actual characteristics of axial forces of RVB and MVB are different depending on their power transmission methods. The torque capacity of MVB is 5-6 times higher than that of RVB due to MVB's higher strength, even if the required axial force of MVB CVT control is 3-4 times higher than that of RVB.

  • PDF

Studies on T-Shaped composite columns consist of multi separate concrete-filled square tubular steel sections under eccentric axial load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Feng, Changxi;Liu, Rui
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.217-234
    • /
    • 2016
  • In order to investigate mechanical properties and load-bearing capacity of T-shaped Concrete-Filled Square Steel Tubular (TCFST) composite columns under eccentric axial load, three T-shaped composite columns were tested under eccentric compression. Experimental results show that failure mode of the columns under eccentric compression was bending buckling of the whole specimen, and mono column performs flexural buckling. Specimens behaved good ductility and load-bearing capacity. Nonlinear finite element analysis was also employed in this investigation. The failure mode, the load-displacement curve and the ultimate bearing capacity of the finite element analysis are in good agreement with the experimental ones. Based on eccentric compression test and parametric finite element analysis, the calculation formula for the equivalent slenderness ratio was proposed and the bearing capacity of TCFST composite columns under eccentric compression was calculated. Results of theoretical calculation, parametric finite element analysis and eccentric compression experiment accord well with each other, which indicates that the theoretical calculation method of the bearing capacity is advisable.

고강도 철근콘크리트 교각의 내진거동특성 (Characteristic Behavior of High-Strength Reinforced Concrete Bridge Column under Simulated Seismic Loading)

  • 나홍성;이경준;류효진;황선경;이진옥
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.22-27
    • /
    • 2004
  • This experimental investigation was conducted to examine the seismic performance of reinforced concrete bridge columns. The columns were subjected to a constant axial load and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (ps = 0.96, 1.44 per cent) and axial load ratio (0.05, 0.1, 0.2 P/Po) and strength $(350kgf/cm^2,\;600kgf/cm^2)$. Test results show that bridge columns with 50 per cent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour. For bridge columns with axial load ratio(P/Po) less than 0.2, the ratio of Mmax over Mad, nominal moment capacity predicted by ACI 318-02 provisions, is consistently greater than 1 with approximately a 20 percent margin of safty.

  • PDF