• Title/Summary/Keyword: axial load capacity

Search Result 580, Processing Time 0.027 seconds

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

P-${\Delta}$ Effects on the Reliability of Offshore Platforms

  • Leon, David-De;Dante Campos
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.31-37
    • /
    • 2003
  • A typical marine platform in the Bay of Campeche is studied from the standpoint of structural reliability, and several characteristics of its deck such as slenderness and diameter/thickness ratios of the legs and actual degree of correlation between some variables are taken into account. The global and local buckling capacities of the deck legs are compared and the correlation coefficient between the critical axial load and the critical moment is assessed in order to validate its influence on the structural reliability. In addition, the influence of the vertical load, and its uncertainty, on the variance of the decks capacity, and latter on, on the platform's failure probability is assessed. The results presented may be used in future studies to further extend and upgrade the first version of the Reference Norm (PEMEX, 2000) and, in the longer term, to improve the current practice in the Design and Requalification of Offshore Marine Platforms in the Bay of Campeche.

  • PDF

Experimental research on the behavior of circular SFRC columns reinforced longitudinally by GFRP rebars

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.513-525
    • /
    • 2023
  • This research presents the experimental and theoretical evaluations on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) rebar under the axial compressive loading. Test programs were designed to investigate and compare the effect of different parameters on the structural behavior of columns by performing tests. Theses variables included conventional concrete (CC), fiber concrete (FC), steel/GFRP longitudinal rebars, and transversal rebars configurations. A total of 16 specimens were constructed and categorized into four groups in terms of different rebar-concrete configurations, including GFRP-rebar-reinforced-CC columns (GRCC), GFRP-rebar-reinforced-FC columns (GRFC), steel-rebar-reinforced-CC columns (SRCC) and steel-rebar- reinforced-FC columns (SRFC). Experimental observations displayed that failure modes and cracking patterns of four groups of columns were similar, especially in pre-peak branches of load-deflection curves. Although the average ultimate axial load of columns with longitudinal GFRP rebars was obtained by 17.9% less than the average ultimate axial load of columns with longitudinal steel rebars, the average axial ductility index (DI) of them was gained by 10.2% higher than their counterpart columns. Adding steel fibers (SFs) into concrete led to the increases of 7.7% and 6.7% of the axial peak load and the DI of columns than their counterpart columns with CC. The volumetric ratio had greater efficiency on peak loads and DIs of columns than the type of transversal reinforcement. A simple analytical equation was proposed to predict the axial compressive capacity of columns by considering the axial involvement of longitudinal GFRP rebars, volumetric ratio, and steel spiral/hoop rebar. There was a good correlation between test results and predictions of the proposed equation.

Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface

  • Chen, Shiming;Zhang, Huifeng
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.277-293
    • /
    • 2012
  • The interaction between steel tube and concrete core is the key design considerations for concrete-filled steel tube columns. In a concrete-filled steel tube (CFST) column, the steel tube provides confinement to the concrete core which permits the composite action among the steel tube and the concrete. Due to construction faults and plastic shrinkage of concrete, the debonding separation at the steel-concrete interface weakens the confinement effect, and hence affects the behaviour and bearing capacity of the composite member. This study investigates the axial loading behavior of the concrete filled circular steel tube columns with debonding separation. A three-dimensional nonlinear finite element model of CFST composite columns with introduced debonding gap was developed. The results from the finite element analysis captured successfully the experimental behaviours. The calibrated finite element models were then utilized to assess the influence of concrete strength, steel yield stress and the steel-concrete ratio on the debonding behaviour. The findings indicate a likely significant drop in the load carrying capacity with the increase of the size of the debonding gap. A design formula is proposed to reduce the load carrying capacity with the presence of debonding separation.

Experimental study on axial response of different pile materials in organic soil

  • Canakci, Hanifi;Hamed, Majid
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.899-917
    • /
    • 2017
  • Sixty four tests were performed in a steel tank to investigate the axial responses of piles driven into organic soil prepared at two different densities using a drop hammer. Four different pile materials were used: wood, steel, smooth concrete, and rough concrete, with different length to diameter ratios. The results of the load tests showed that the shaft load capacity of rough concrete piles continuously increased with pile settlement. In contrast, the others pile types reached the ultimate shaft resistance at a settlement equal to about 10% of the pile diameter. The ratios of base to shaft capacities of the piles were found to vary with the length to diameter ratio, surface roughness, and the density of the organic soil. The ultimate unit shaft resistance of the rough concrete pile was always greater than that of other piles irrespective of soil condition and pile length. However, the ultimate base resistance of all piles was approximately close to each other.

A Study on the Collapse Characteristics of Thin-walled Structural Members for Automobiles Under Axial Compression Load (차체구조용 박육부재의 압궤특성에 관한 연구)

  • 김정호;임성훈;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.1-14
    • /
    • 1997
  • In this paper, collapse test of thin-walled structural member widely used for automobiles is carried out under static compression load to observe the effects of cross- sectional shape and material on the energy absorbing capacity in the viewpoint of cras- hworthiness. Specimens tested consist of two sorts(Aluminium, CFRP) and configur- ations(Circular, Square) with variation in thickness. Also, comparisons of Al circular and square specimens are made to find the influence of difference in shape on the energy absorbing capability according as the thickness of specimen varies.

  • PDF

The Flexural Behavior of a Square Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 각형 탄소섬유 튜브 기둥의 휨거동특성)

  • Kim, Hee-Cheul;Hong, Won-Kee;Lee, Hyun-Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.1-10
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of square concrete filled carbon tube (CFCT) columns subjected to constant axial load with the cyclic lateral load. Two parameters, wnding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of rectangular CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of a rectangular CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of rectangular CFCT columns were evaluated by calculating the area of load-displacement envelope curves and load-dispalcement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment was compared to that of reinforced masonry wall for the comparison of existing structural element.

The Flexural Behavior of a Circular Concrete Filled Carbon Tube Columns under the Constant Axial Force with Reversed Cyclic Lateral Load (축하중과 반복 횡하중을 받는 콘크리트 충진 원형 탄소섬유 튜브 기둥의 휨거동특성)

  • Hong, Won-Kee;Kim, Hee-Cheul;Chung, Jin-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.13-22
    • /
    • 2004
  • The purpose of this study is to investigate the flexural behavior of circular concrete filled carbon tube(CFCT) columns subjected to constant axial load with the cyclic lateral load. Six numbers of composite columns were tested. Two parameters, winding angle and thickness of tube, were chosen to evaluate the flexural capacity and behavior of CFCT columns. Selected two parameters were considered simultaneously in order to evaluate the flexural behavior of CFCT columns more precisely. Flexural strength, deformation capacity, ductility and energy dissipation capacity of CFCT columns were evaluated by calculating the area of load-displacement envelop curves and load-displacement hysteresis curves obtained from experiment. Also, the ductile capacity obtained from experiment were compared to that of reinforced masonry wall for the comparison of existing structural element.

Axial Load Capacity Prediction of Single Piles in Clay and Sand Layers Using Nonlinear Load Transfer Curves (비선형 하중전이법에 의한 점토 및 모래층에서 파일의 지지력 예측)

  • Kim, Hyeongjoo;Mission, Joseleo;Song, Youngsun;Ban, Jaehong;Baeg, Pilsoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.45-52
    • /
    • 2008
  • The present study has extended OpenSees, which is an open-source software framework DOS program for developing applications to idealize geotechnical and structural problems, for the static analysis of axial load capacity and settlement of single piles in MS Windows environment. The Windows version of OpenSees as improved by this study has enhanced the DOS version from a general purpose software program to a special purpose program for driven and bored pile analysis with additional features of pre-processing and post-processing and a user friendly graphical interface. The method used in the load capacity analysis is the numerical methods based on load transfer functions combined with finite elements. The use of empirical nonlinear T-z and Q-z load transfer curves to model soil-pile interaction in skin friction and end bearing, respectively, has been shown to capture the nonlinear soil-pile response under settlement due to load. Validation studies have shown the static load capacity and settlement predictions implemented in this study are in fair agreement with reference data from the static loading tests.

  • PDF

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.