• Title/Summary/Keyword: axial force variation

Search Result 98, Processing Time 0.032 seconds

Inelastic seismic analysis of RC bridge piers including flexure-shear-axial interaction

  • Lee, Do Hyung;Elnashai, Amr S.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.241-260
    • /
    • 2002
  • The effect of shear coupled with axial force variation on the inelastic seismic behaviour of reinforced concrete bridge piers is investigated in this paper. For this purpose, a hysteretic axial-shear interaction model was developed and implemented in a nonlinear finite element analysis program. Thus, flexure-shear-axial interaction is simulated under variable amplitude reversed actions. Comparative studies for shear-dominated reinforced concrete columns indicated that a conventional FE model based on flexure-axial interaction only gave wholly inadequate results and was therefore incapable of predicting the behaviour of such members. Analysis of a reinforced concrete bridge damaged during the Northridge (California 1994) earthquake demonstrated the importance of shear modelling. The contribution of shear deformation to total displacement was considerable, leading to increased ductility demand. Moreover, the effect of shear with axial force variation can significantly affect strength, stiffness and energy dissipation capacity of reinforced concrete members. It is concluded that flexure-shear-axial interaction should be taken into account in assessing the behaviour of reinforced concrete bridge columns, especially in the presence of high vertical ground motion.

An Experimental Study on the Fatigue Behavior of Torque Shear Type High Tension Bolted Joints (Torque Shear형 고장력 볼트 이음부의 피로거동에 관한 실험적 연구)

  • CHANG, Dong Il;Lee, Sung Uk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.151-160
    • /
    • 1996
  • The fatigue test under the constant amplitude repeated loading is performed to investigate the fatigue behavior of the Torque Shear type high tension bolted joint which is able to manage the axial force uniformly. From the test results, it's known that the reduction of the axial force of T/S bolt followed by the elasped time is similar to that of the high tension bolts. The difference of relaxation is not occurred according to the position of bolts, the size of the introduced axial force but the effect of the variation of temperature is large. In the reduction of the axial force followed by the cumulation of the fatigue load, the outer bolt is larger than the inner bolt. This result depends on the difference in the distribution of the non-slip zone. The variation of the surface roughness affects the slip and the reduction of the anal force.

  • PDF

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF

Variation of Rail's Axial Compressive Force on Railway Bridges Due to Thermal and Seismic Loads with using EQS Bearings (EQS 면진받침 사용 시 온도하중 및 지진하중에 대한 철도교량 레일 압축력 변화)

  • Kim Lee Hyeon;Kim Haksoo;Choi Eunsoo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.276-285
    • /
    • 2005
  • This study discussed the effect on rail's axial force due to thermal and seismic loads according to supporting conditions of railway bridges; the considered supporting conditions are 1)simply supported, 2)roller at both ends, and 3)roller with horizontal spring at both ends. Closed form solutions are used to calculate the axial farces on rails. The roller at both ends of a bridge span decreases the compressive axial force on rail due to thermal load compared with the simply supported condition. However, the lateral springs at roller are not helpful to decrease the rail's compressive axial force.

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

A Study on the Axial Vibration Characteristics of the Super Large 2 Stroke Low Speed Diesel Engine with 14 Cylinders (14 실린더를 갖는 초대형 저속 2행정 디젤엔진의 종진동 특성에 관한 연구)

  • Lee, D.C.;Kim, T.U.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.376-381
    • /
    • 2009
  • The increasing needs for higher cargo capacity in the container vessels' fleet has led to ship builder's demand for higher power output rating engine to meet the propulsion requirement, thus, leading to the development of super large two stroke low speed diesel engines. This large sized bore engines with more than 12 cylinders are capable of delivering power output up to more than 100,000 bhp at maximum continuous rating. The thrust variation force due to axial vibration occurring in propulsion shafting of these ships are transmitted to ship structure via thrust bearing. This force may vibrate the super structure of ship in the fore-aft direction and the fatigue strength of crank shaft can be decreased by additional bending stress increase in crank shaft pin and journal. In this paper, the axial vibration of propulsion shafting system on the 14RT-flex96C super large diesel engine with 14 cylinders is identified by theoretical analysis and vibration measurement.

  • PDF

A study on the axial force on the CWR of the suport rotation (열차하중에 따른 교량 신축부 장대레인 축력 연구)

  • Park, Jun-O;Kim, Jong-Min;Kim, Woo-Jin
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.460-469
    • /
    • 2006
  • It is widely known that the temperature variation introduces the axial force along a CWR(Continuous Welded Rail) in the railway bridges. Additional axial forces are generated due to many other reasons. These includes the interaction between the bridge girder and the CWR; acceleration or deceleration of the vehicles; support rotation (or deflection) of the girder. Among aforementioned reasons, this study investigates the influence of the support rotation on additional axial forces throughout the numerical study and the field test. Several strains gauges are installed along the CWR and the strains are measured under passing trains. It is expected that the elaborated estimation of the axial force on CWR will be beneficial for future railway maintenance.

  • PDF

Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator

  • Chen, Cheng;Yuan, Xulong;Liu, Xiyan;Dang, Jianjun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.482-494
    • /
    • 2019
  • In this paper, the oblique water-entry impact of a vehicle with a disk cavitator is studied experimentally and numerically. The effectiveness and accuracy of the numerical simulation are verified quantitatively by the experiments in this paper and the data available in the literature. Then, the numerical model is used to simulate the hydrodynamic characteristics and flow patterns of the vehicle under different entry conditions, and the axial force is found to be an important parameter. The influences of entry angle, entry speed and cavitator area on the axial force are studied. The variation law of the force coefficient and the dimensionless penetration distance at the peak of the axial force are revealed. The research conclusions are beneficial to engineering calculations on the impact force of a vehicle with a disk cavitator over a wide range of water-entry parameters.

Shear Strength Prediction of Reinforced Concrete Members Subjected In Axial force using Transformation Angle Truss Model (변환각 트러스 모델에 의한 축력을 받는 철근콘크리트 부재의 전단강도 예측)

  • Kim Sang-Woo;Lee Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.813-822
    • /
    • 2004
  • For the prediction of the shear strength of reinforced concrete members subjected to axial force, this paper presents a truss model, Transformation Angle Truss Model (TATM), that can predict the shear behavior of reinforced concrete members subjected to combined actions of shear, axial force, and bending moment. In TATM, as axial compressive stress increases, crack angle decreases and concrete contribution due to the shear resistance of concrete along the crack direction increases in order to consider the effect of the axial force. To verify if the prediction results of TATM have an accuracy and reliability for the shear strength of reinforced concrete members subjected to axial forces, the shear test results of a total of 67 RC members subjected to axial force reported in the technical literatures were collected and compared with TATM and existing analytical models(MCFT RA-STM and FA-STM). As a result of comparing with experimental and theoretical results, the test results was better predicted by TATM with 0.94 in average value of $\tau_{test}/\tau_{ana}$. and $11.2\%$ in coefficient of variation than other truss models. And theoretical results obtained from TATM were not effect by steel capacity ratio, axial force, shear span-to-depth ratio, and compressive steel ratio.

Effects of Linear and Nonlinear Shear Deformation on Measurement for Stickiness of Cosmetics Using Rotational Rheometer

  • Bae, Jung-Eun;Ryoo, Joo-Yeon;Kang, Nae-Gyu
    • Korea Journal of Cosmetic Science
    • /
    • v.2 no.1
    • /
    • pp.33-46
    • /
    • 2020
  • Cosmetics are representative complex fluids, and there have been many studies focusing on the correlation between the rheological properties and sensory attributes. Various instrumental measurements have been suggested to evaluate the sensory attributes, and one of the most common instruments is Texture Analyzer (TA). Although it is reported that the adhesiveness measured by TA is related to the stickiness of cosmetics, there exists reproducibility problem because measurements with TA are sensitive to application conditions. In this study, an instrumental protocol using rotational rheometer has been set up to measure the stickiness of cosmetics. This protocol consists of two steps. The first step is a preconditioning step, and various types of shear deformations are applied to the samples. The next step is the extensional flow and the axial force is measured. When the amplitude of the shear flow corresponded to the linear viscoelastic region, the axial force is the same as those without preconditioning. On the other hand, an axial force decreases as variation nonlinearity increases. It is because the effects of microstructure changes caused by nonlinear deformation affects the extensional flow. It is worth noting that a new protocol facilitates to evaluate the stickiness of cosmetics in a more systematic way.