• Title/Summary/Keyword: axial flux

Search Result 317, Processing Time 0.032 seconds

Interaction of Magnetic Flux Ropes in Relation to Solar Eruption

  • Yi, Sibaek;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2018
  • Twisted magnetic flux tubes (also called magnetic flux ropes) are believed to play a crucial role in solar eruptive phenomena. The evolution of a single flux rope with or without the influence of an overlying field of a simple geometry has been extensively studied and its physics is rather well understood. Observations show that interacting flux tubes are often involved in solar eruptions. It was Lau and Finn (1996) who intensively studied the interaction between two flux ropes, whose footpoints are anchored in two parallel planes. In this too simplified setting, the curvature of the flux rope axial fields is totally ignored. In our study, the footpoints of flux ropes are placed in a single plane containing a polarity inversion line as in the real solar active region. Our simulation study is performed for four cases: (1) co-axial field and co-axial current (co-helicity), (2) counter-axial field and co-axial current (counter-helicity), (3) co-axial field and counter-axial current (counter-helicity), and (4) counter-axial field and counter-axial current (co-helicity). Except case 3, each case is found to be related with certain eruptive features.

  • PDF

Evolution of Coronal Magnetic Fields Consisting of Flux Ropes and Overlying Fields

  • Jun, Hongdal;Yi, Sibaek;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.69.1-69.1
    • /
    • 2019
  • A series of numerical MHD simulations are performed to investigate the evolution of coronal magnetic fields consisting of two flux ropes and an overlying field. Depending on the directions of the axial current and the axial field, two co-helicity cases and two counter-helicity cases are addressed. In Case 1, in which both the axial currents and the axial fields are parallel, flux rope merging bears a huge flux rope with a large winding number. This flux rope naturally erupts, but the whole evolutionary process is rather slow. In Case 2, in which the axial currents are parallel while the axial fields are antiparallel, a self-closed structure is formed and it drives eruption. In Case 3, in which the axial currents are antiparallel and the axial fields are parallel, each flux rope erupts independently and the presence of the other flux rope does not affect the eruption of one flux rope. In Case 4, in which both the axial currents and the axial fields are antiparallel, interaction of the flux ropes and the overlying field effects a breakout reconnection creating an apple-like CME configuration. Our study tells what kind of eruption mechanisms are involved for different eruption features observed.

  • PDF

Comparison and Analysis on magnetic structures of Switched Reluctance Motors (Switched Reluctance Motor의 자기적 구조에 대한 비교 해석)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • SRM is designed to meet operating standards such as low cost, simple magnetic structure, a desired operating speed range, high efficiency, high performance, and good matching for DC power. The magnetic flux of SRM is independent of its direction to develop a torque and it allows the flexible characteristics of the magnetic structure for SRM. In this paper, SRM can widely classify two types, Radial-Flux SRM and Axial-Flux SRM, according to the flux direction. Radial-Flux SRM includes Conventional, Segmented stator and rotor, and Double stator SRM, etc. and Axial-Flux SRM includes C-core stator and the Axial-airgap SRM. This paper is subjected the basic characteristics to select the best of the magnetic structure of SRM in the appropriate application by the classification of SRM.

A Comprehensive Study of Interaction of Magnetic Flux Ropes Leading to Solar Eruption

  • Yi, Sibaek;Choe, Gwang Son;Jun, Hongdal;Kim, Kap-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2019
  • Solar observations often show that interaction of more than one flux rope is involved in solar eruptions. In this regard, Lau and Finn (1996) intensively studied the interaction of two flux ropes, which reside in between two parallel planes each mimicking one polarity region of the solar photosphere. However, this geometry is quite far from the real solar situation, in which all feet of flux tubes are rooted in one surface only. In this paper, we study the interaction of two flux ropes in a semi-infinite region above a plane representing the solar photosphere. Four cases of the flux rope interaction are investigated in our MHD simulation study: (1) parallel axial fields and parallel axial currents (co-helicity), (2) antiparallel axial fields and parallel axial currents (counter-helicity), (3) parallel axial fields and antiparallel axial currents (counter-helicity), and (4) antiparallel axial fields and antiparallel axial currents (co-helicity). Each case consists of four or six subcases according to the background field direction relative to the flux ropes and the relative positions of the flux rope footpoints. In our simulations, all the cases eventually show eruptive behaviors, but their degree of explosiveness and field topological evolutions are quite different. We construct artificial emission measure maps based on the simulations and compare them with images of CME observations, which provides us with information on what field configurations may generate certain eruption features.

  • PDF

Design of Combined Radial and Axial 4-pole Electromagnetic Bearing (I) - with Uncoupled Bias Flux - (반경방향-축방향 일체형 4극 전자기 베어링의 설계 (I) - 바이어스 자속 독립형 -)

  • Kim Ha-Yong;Kim Seung-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1561-1566
    • /
    • 2005
  • In this paper, a new compact active magnetic bearing(AMB) is proposed in which radial and axial bearings are integrated in one bearing unit. It consists of four U-shaped cores circumferentially connected by yokes and two-layer coils for radial and axial controls. For the radial control action, it has the same principle as conventional homopolar AMBs, while for the axial control, it uses the Lorentz force generated by the interaction of the bias flux for radial control and the axial control flux. The proposed structure makes it easy to design a compact AMB because it has no disk for axial control. This paper introduces the proposed structure, principle, and design process based on the magnetic flux analysis. By using a control algorithm with feedforward action to compensate the coupled flux effect, the feasibility of the proposed AMB is experimentally verified.

Optimal Performance Characteristic of Axial Flux Motor by Controlling Air Gap (공극 제어에 의한 Axial Flux Motor의 최적 운전 특성)

  • 오성철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.535-540
    • /
    • 2003
  • Since axial flux motor has an advantage over more conventional radial flux type motor such as high power density, it can be used as a power train for hybrid electric vehicle and electric vehicle. Also operating range can be extended and efficiency can be improved by changing air gap. Optimal operating air gap is estimated based on the measured efficiency at different air gap. Motor model is developed based on estimated optimal air gap and efficiency. Motor/controller performance is analyzed through simulation. Possible application area of axial flux motor was explored through simulation.

An Experimental Study of Critical Heat Flux in Non-uniformly Heated Vertical Annulus under Low Flow Conditions

  • Chun, Se-Young;Moon, Sang-Ki;Baek, Won-Pil;Chung, Moon-Ki;Masanori Aritomi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1171-1184
    • /
    • 2003
  • An experimental study on critical heat flux (CHF) has been performed in an internally heated vertical annulus with non-uniform heating. The CHF data for the chopped cosine heat flux have been compared with those for uniform heat flux obtained from the previous study of the authors, in order to investigate the effect of axial heat flux distribution on CHF. The local CHF with the parameters such as mass flux and critical quality shows an irregular behavior. However, the total critical power with mass flux and the average CHF with critical quality are represented by a unique curve without the irregularity. The effect of the heat flux distribution on CHF is large at low pressure conditions but becomes rapidly smaller as the pressure increases. The relationship between the critical quality and the boiling length is represented by a single curve, independent of the axial heat flux distribution. For non-uniform axial heat flux distribution, the prediction results from Doerffer et al.'s and Bowling's CHF correlations have considerably large errors, compared to the prediction for uniform heat flux distribution.

Cogging Torque Reduction in AFPM Generator Design for Small Wind Turbines (소형 풍력발전기용 AFPM 발전기 코깅토크 저감 설계)

  • Chung, Dae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1820-1827
    • /
    • 2012
  • This paper is to present a new method of cogging torque reduction for axial flux PM machines of multiple rotor surface mounted magnets. In order to start softly and to run a power generator even the case of weak wind power, reduction of cogging torque is one of the most important issues for a small wind turbine, Cogging torque is an inherent characteristic of PM machines and is caused by the geometry shape of the machine. Several methods have been already applied for reducing the cogging torque of conventional radial flux PM machines. Even though some of these techniques can be also applied to axial flux machines, manufacturing cost is especially higher due to the unique construction of the axial flux machine stator. Consequently, a simpler and low cost method is proposed to apply on axial flux PM machines. This new method is actually applied to a generator of 1.0kW, 16-poles axial flux surface magnet disc type machine with double-rotor-single-stator for small wind turbine. Design optimization of the adjacent magnet pole-arc which results in minimum cogging torque as well as assessment of the effect on the maximum available torque using 3D Finite Element Analysis (FEA) is investigated in this design. Although the design improvement is intended for small wind turbines, it is also applicable to larger wind turbines.

Operation Principle and Topology Structures of Axial Flux-Switching Hybrid Excitation Synchronous Machine

  • Liu, Xiping;Wang, Chen;Zheng, Aihua
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • The operation principle of an axial flux-switching hybrid excitation synchronous machine (AFHESM) is analyzed and its topology structures are proposed in this paper. After some comprehensive analysis of the operation principle to axial flux electrical machine, flux-switching electrical machine and hybrid excitation electrical machine, the operation principle of AFHESM is given. Combined with some typical topological structures of hybrid excitation electrical machine, some possible topological structures are proposed and some comprehensive comparisons are carried out. The analysis results show that the stator-separated AFHESM has some advantages such as less AM turns, less impact on the demagnetization of PM, less magnetic flux-leakage and higher efficiency compared to other topologies.

Characteristic analysis of axial-flux type Brush Less DC motor (Axial-flux type BLDC 전동기의 특성해석)

  • Park Su-Beom;Lee Shang-Ho;Nam Hyuk;Hong Jung-Pyo;Lee Jeong-jong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1058-1060
    • /
    • 2004
  • This paper presents a characteristic analysis method for an air gap flux density of axial-flux type brushless dc (BLDC) motor. The magnetic flux density for the torque, and vertical force characteristics is calculated by using analytical method, based on the concept of magnetic charge. The calculated results by the presented method is compared with those by 3 dimensional finite element method (3D FEM). Using the presented method, the characteristics of single and double sided axial-flux type BLDC motors are investigated through distributions of air gap flux density.

  • PDF