• Title/Summary/Keyword: axial flow

Search Result 1,435, Processing Time 0.029 seconds

Effects of the Low Reynolds Number on the Loss Characteristics in a Transonic Axial Compressor

  • Choi, Min-Suk;Oh, Seong-Hwan;Ko, Han-Young;Baek, Je-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.202-212
    • /
    • 2008
  • A three-dimensional computation was conducted to understand effects of the low Reynolds number on the loss characteristics in a transonic axial compressor, Rotor67. As a gas turbine becomes smaller in size and it is operated at high altitude, the operating condition frequently lies at low Reynolds number. It is generally known that wall boundary layers are thickened and a large separation occurs on the blade surface in axial turbomachinery as the Reynolds number decreases. In this study, it was found that the large viscosity did not affect on the bow shock at the leading edge but significantly did on the location and the intensity of the passage shock. The passage shock moved upstream towards leading edge and its intensity decreased at the low Reynolds number. This change had large effects on the performance as well as the internal flows such as the pressure distribution on the blade surface, tip leakage flow and separation. The total pressure rise and the adiabatic efficiency decreased about 3% individually at the same normalized mass flow rate at the low Reynolds number. In order to analyze this performance drop caused by the low Reynolds number, the total pressure loss was scrutinized through major loss categories such as profile loss, tip leakage loss, endwall loss and shock loss.

  • PDF

Design analysis and simulation of an external helical gear

  • Jinlong Yang;Kwang-Hee Lee;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.45-53
    • /
    • 2023
  • This study optimized the parameters of the helical gear based on the original external meshing helical gear pump, combined with the analysis of the stability and flow of the basic parameters of the equipment; herringbone gears were used to eliminate the axial force generated by the helical gears. An optimized helical gear rotor was built with NX. The error between the simulation and calculation results of pump displacement was 3.95% and the simulation results were valid. Analysis of the outlet pressure and lift changes (maximum change rates of 0.38% and 0.25%), pressure analysis of the XY center plane at different times in the same cycle (no pressure surge or drop), and analysis of the axial force of the primary and driven rotors (axis The axial force is close to 0) were performed. The results showed that the flow pulsation of the external gear pump was slight, the operation was smooth, vibration and friction were reduced, the wear of bearings and other components could be diminished, and the service life of the equipment was extended. The simulation results showed that the external gear pump met the design requirements.

Axial Thrust Measurement of Fuel Pump for Liquid Rocket Engine (로켓엔진용 연료펌프의 축추력 측정)

  • Kim Dae-Jin;Hong Soon-Sam;Choi Chang-Ho;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.358-362
    • /
    • 2005
  • An effective control of the axial thrust of a turbopump is one of the critical issues for its operational stability. In order to assure the stability of a turbopump-type fuel pump for a liquid rocket engine, an axial thrust measurement system was developed and a series of axial thrust tests were performed in water environment. In the tests, the axial thrust of the fuel pump at the design flowrate satisfied the axial force condition of the bearing of the pump. Also, it was found that by using orifices with different geometries in the secondary flow passage the overall axial thrust of the pump could be controlled.

  • PDF

Influence of Manufacturing Tolerance on the Aerodynamic Characteristics of Axial Compressor Blades - 1. Distortion of Blade Profile Curvatures (축류 압축기 날개의 제작 공차가 공력 특성에 미치는 영향- 1. 날개 형상 곡률 변형)

  • Sohn, Jeong L.;Kang, Dong Jin;Jun, Hyun Joo;Kang, Shin-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.30-36
    • /
    • 1999
  • Blade shape profile in the axial compressor is one of the most important factors governing its aerodynamic characteristics. Manufacturing tolerance, which is inevitable in the blade manufacturing processes, may change blade profile and as a consequence, it will affect the compressor performance. In this paper, influence of manufacturing tolerance on the aerodynamic characteristics of axial compressor blades with distortion of blade profile curvatures is investigated by using a flow simulation technique. It is found that manufacturing tolerance can be an important factor affecting the source of both profile and wake losses of the axial compressor blades.

  • PDF

A Study on the Performance Test of Axial-flow Cyclone Separator (축상유입식 사이클론 집진기 성능시험에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.101-106
    • /
    • 2020
  • Along with dust collection efficiency, pressure loss is a very important cyclone operation factor. A severe rise in pressure loss causes the problem of cost. To solve the problem, the method connecting axial-vane type cyclones in parallel is suggested recently. The axial vane type cyclone dust collector applied in this study is a small portable type. Multiple cyclones are installed in a round type. The basic performance test on the axial vane type cyclone dust collector was conducted. As a result, the cut size reduced along with a rise in the wind velocity of the cyclone dust collector inlet. According to the test on dust collection efficiency, the effect of dust collection began to appear in the range of 3㎛ and dust collection efficiency was greatly improved at 5 ㎛. The noise of the cyclone dust collector well met the fan sound power level of KSB 6361.

Comparisons of Dust Collection Efficiency on the Tangental Entry and Axial-vane Type Cyclone (접선유입식과 축상유입식 사이클론의 집진효율 비교)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.115-121
    • /
    • 2011
  • This study is about comparison of tangental entry type cyclone dust collector with axial vane type cyclone dust collector. Cut diameter and dust collection efficiency of both collector was compared by theory and experiment. Cut diameter was calculated by an quasi-empirical formula by Lapple and Shepherd. Measurement of cut diameter was conducted by particle counter through dust generator. As the result, cut diameter obtained by experiment was a little larger than that by theory. But the error is within $0.5{\mu}m$ in both type of collector, so it could be confirmed that theoretical value and experimental value were almost identical. And, as flow rate increased, dust collection efficiency was increased. Also axial vane type showed higher dust collection efficiency than tangental entry type. Therefore, it can be said that axial vane type cyclone dust collector has higher performance than the other.

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

A Study on Flow Characteristics with the Installed Location Change of Mechanical Deflector (기계적 편향판 설치위치의 변화에 따른 유동특성에 대한 연구)

  • Kim, Kyoung-Ryun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.49-53
    • /
    • 2015
  • Thrust vector control is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. TVC of the tapered ramp tabs has the potential to produce both large axial thrust and high lateral force. We have conducted the experimental research and flow analysis of ramp tabs to show the performance and the structural integrity of the TVC. The experiments are carried out with the supersonic cold flow system and the schlieren graph. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Flow Analysis of the Plain Seal with Injection (분사를 수반하는 평씨일 내의 유동해석)

  • 이관수;김우승;김기연;김창호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.795-802
    • /
    • 1992
  • A numerical analysis is performed on the turbulent flow in the plain seal with injection. The parameters used in this study are as follows : Reynolds number, rotation speed, injection speed, clearance ratio, injection angle, and axial injection location. Flow pattern and leakage performance due to the variation of parameters are investigated. SIMPLER algorithm is used to solve the Navier-Stokes equation governing steady, incompressible turbulent flow and standard K- .epsilon. turbulent model is used to consider the turbulence effects. The leakage performance is significantly enhanced with injection. The increases of the injection flow rate and be rotation speed of the shaft cause the leakage performance to the increased. With the increase of the Reynolds number the leakage performance is diminished. At the injection angle of 90deg, the leakage coefficient has a minimum value. The pressure drop has a maximum value at axial center location but the injection location has little effect on the pressure drop. Clearance ratio has a significant effect on the pressure drop.

An Experimental Study on Flow Characteristics of Turbulent Pulsating Flow in a Curved Duct by Using LDV (LDV에 의한 곡관덕트에서 난류맥동유동의 유동특성에 관한 실험적 연구)

  • Lee, Hong-Gu;Son, Hyeon-Cheol;Lee, Haeng-Nam;Park, Gil-Mun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1561-1568
    • /
    • 2001
  • In the present study, flow characteristics of turbulent pulsating flow in a square-sectional 180$^{\circ}$curved duct were experimentally investigated. The experimental study for air flows in a curved duct are carried out to measure axial velocity profiles, wall shear stress distributions and entrance length in a square-sectional 180$^{\circ}$curved duct by using the Laser Doppler Velocimeter(LDV) system and the data acquisition. Velocity profiles are obtained using the Rotating Machinery Resolver(RMR)and PHASE software in case of turbulent pulsating flow. Finally, it was plotted by the ORIGIN software. The experiment was conducted in seven sections from the inlet (ø = 0$^{\circ}$) to the outlet (ø=l80$^{\circ}$) at 3 0$^{\circ}$intervals of the duct.