• Title/Summary/Keyword: axial equilibrium

Search Result 134, Processing Time 0.03 seconds

Simplified sequential construction analysis of buildings with the new proposed method

  • Afshari, Mohammad Jalilzadeh;Kheyroddin, Ali;Gholhaki, Majid
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.77-88
    • /
    • 2017
  • Correction Factor Method (CFM) is one of the earliest methods for simulating the actual behavior of structure according to construction sequences and practical implementation steps of the construction process which corrects the results of the conventional analysis just by the application of correction factors. The most important advantages of CFM are the simplicity and time-efficiency of the computations in estimating the final modified forces of the beams. However, considerable inaccuracy in evaluating the internal forces of the other structural members obtained by the moment equilibrium equation in the connection joints is the biggest disadvantage of the method. This paper proposes a novel method to eliminate the aforementioned defect of CFM by using the column shortening correction factors of the CFM to modify the axial stiffness of columns. In this method, the effects of construction sequences are considered by performing a single step analysis which is more time-efficient when compared to the staged analysis especially in tall buildings with higher number of elements. In order to validate the proposed method, three structures with different properties are chosen and their behaviors are investigated by application of all four methods of: conventional one-step analysis, sequential construction analysis (SCA), CFM, and currently proposed method.

Theoretical and experimental study on deflection of steel-concrete composite truss beams

  • Wang, Junli;Li, Tian;Luo, Lisheng
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.91-106
    • /
    • 2018
  • This paper investigates the deflection of the steel-concrete composite truss beam (SCCTB) at the serviceability limit state. A precise solution for the distributed uplift force of the SCCTB, considering five different loading types, is first derived based on the differential and equilibrium equations. Furthermore, its approximate solution is proposed for practical applications. Subsequently, the shear slip effect corresponding to the shear stiffness of the stub connectors, uplift effect corresponding to the axial stiffness of the stub connectors and shear effect corresponding to the brace deformation of the steel truss are considered in the derivation of deflection. Formulae for estimating the SCCTB deflection are proposed. Moreover, based on the proposed formulae, a practical design method is developed to provide an effective and convenient tool for designers to estimate the SCCTB deflection. Flexure tests are carried out on three SCCTBs. It is observed that the SCCTB stiffness and ultimate load increase with an increase in the shear interaction factor. Finally, the reliability of the practical design method is accurately verified based on the available experimental results.

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.

A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams

  • Bellifa, Hichem;Benrahou, Kouider Halim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • In this work, a nonlocal zeroth-order shear deformation theory is developed for the nonlinear postbuckling behavior of nanoscale beams. The beauty of this formulation is that, in addition to including the nonlocal effect according to the nonlocal elasticity theory of Eringen, the shear deformation effect is considered in the axial displacement within the use of shear forces instead of rotational displacement like in existing shear deformation theories. The principle of virtual work together of the nonlocal differential constitutive relations of Eringen, are considered to obtain the equations of equilibrium. Closed-form solutions for the critical buckling load and the amplitude of the static nonlinear response in the postbuckling state for simply supported and clamped clamped nanoscale beams are determined.

Experimental Distillation of Ethanol-Propanol Mixture Using a Horizontal Column (수평증류를 이용한 에탄올-프로판올 혼합물의 증류실험)

  • Kim, Byoung Chul;Kim, Young Han
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.93-97
    • /
    • 2013
  • A lab-sized distillation experiment was conducted using small-size packings and a horizontal distillation column. The 6.7 mm Raschig ring type packings of stainless steel and a 40 mm glass column were used, and five independent electric heaters were installed in the axial direction to adjust the column inside temperature separately. The temperature was continuously distributed along the column length to provide equivalent equilibrium to the temperature for the separation. From the experimental results, a larger HETP of the column than the vertical distillation column was obtained, but it was found that the practical separation with proper processing capacity and separation efficiency was available.

Buckling Loads of Column with Constant Surface Area (일정표면적 기둥의 좌굴하중)

  • Lee, Byoung Koo;Park, Kwang Kyou;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.1-7
    • /
    • 2011
  • This paper deals with buckling loads of the column with the constant surface area. The shape function of variable column depth is chosen as the linear taper. The ordinary differential equation governing buckled shapes of the column is derived based on the dynamic equilibrium equation of such column subjected to an axial load. Three kinds of end constraint of hinged-hinged, hinged-clamped and clamped-clamped are considered in numerical examples. Effects of the column parameters on buckling loads are extensively discussed. Especially, section ratios of the strongest column are calculated, under which the maximum, i.e. strongest, buckling loads are achieved. Also the buckled shapes are obtained for searching the nodal points where the inner transverse supports are simply installed to increase the buckling loads.

Experimental study on two-phase flow behavior inside a vertical tube evaporator under flashing phenomenon (후래시 현상을 수반하는 수직증발관내에서의 2상유동에 관한 실험적 연구)

  • 이상용;송시홍;이상호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.833-846
    • /
    • 1988
  • Two-phase flow heat transfer phenomena with flash evaporation inside a vertical tube were studied experimentally. Void fractions were measured using electrical probes, and the flow patterns were identified from the output voltage signal itself. The flow pattern as well as the beat transfer rates were changing along the axial distance from the tube inlet with the system pressure. As the pressure inside the tube decreases with fixed inlet temperature, the overall heat transfer coefficient through the tube wall and the boiling heat transfer coefficient inside the tube increase whereas the condensation heat transfer coefficient outside the tube decreases. The boiling heat transfer coefficient inside the tube measured by the experiments appeared to be somewhat larger than the value obtained from the Chen's correlation. Also, the flow patterns identified from present experiments are at the larger quality region of the low pattern map based on the transition criteria of Mishima and Ishii. This may be due to the non-equilibrium flashing phenomenon occurred at the nozzle exit and the tube inlet ; this also implies that the flow pattern of the two-phase flow depends strongly on the inlet conditions.

Postbuckling Compressive Strengths of Composite Laminated Cylindrical Panels (복합적층 원통판넬의 좌굴후 압축강도)

  • 권진희;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.958-966
    • /
    • 1994
  • The postbuckling compressive strengths of $[0/90/\pm\theta]_s$ composite laminated cylindrical panels with various fiber angles and width-to-length ratios are characterized by the nonlinear finite element method. For the iteration and load-increment along the postbuckling equilibrium path a modified arc-length method in which the effect of failure can be considered is introduced. In the progressive failure analysis the maximum stress criterion and complete unloading model are used. Present finite element results show good agreement with experiments for $[0_3/90]_s$ cylindrical panel and $[0/\pm45/90/]_s$ plate. The postbuckling compressive strength of $[0/90/\pm\theta]_s$ composite laminated cylindrical panel is independent of the initial buckling stress but high in the panel with large value of the bending stiffness in axial direction. In the several cylindrical panels, it is observed that the prebuckling compressive failures occur and result into the collapse before the buckling.

Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior

  • Arefi, Mohammad;Nasr, Mehrdad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.331-347
    • /
    • 2018
  • In this paper history of stresses, strains, radial and circumferential displacements of a functionally graded thick-walled hollow cylinder due to creep phenomenon is investigated. The cylinder is subjected to an arbitrary non-axisymmetric two dimensional thermo-mechanical loading and uniform magnetic field along axial direction. Using equilibrium, strain-displacements and stress-strain relations, the governing differential equations of the problem containing creep strains are derived in terms of radial and circumferential displacements. Since the displacements are varying with time due to creep phenomenon, an analytical solution is not available for these equations. Thus, a semi-analytical procedure based on separation of variables and Fourier series together with a numerical procedure is employed. The numerical results indicate that the non-axisymmetric loading and the material grading index have significant effect on stress redistributions. Moreover, by proper selection of material for any combination of non-axisymmetric loading, one can arrive suitable response for the cylinder to achieve optimal design. With some simplifications, the results are validated with the existing literature.

Characteristic Analysis of Rotor System due to the Positioning Angles of HDD Supported by Fluid Dynamic Bearings (유체동압베어링으로 지지되는 HDD 의 장착각도에 따른 회전부의 특성해석)

  • Hwang, Choongman;Jang, Gunhee;Lee, Jihoon;Lee, Minho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.986-992
    • /
    • 2014
  • This research investigates experimentally and numerically the tilting angle, eccentricity ratio, flying height of axial direction, friction torque, and critical mass of the HDD disk-spindle system due to HDD positioning angle. The tilting angle and the eccentricity ratio are the maximum when the HDD positioning angle is $90^{\circ}$ respect to horizontal position because the external force in radial direction and the torque applied to the rotating part are the maximum when the HDD positioning angle is $90^{\circ}$. The flying height increases with the increase of the HDD positioning angle because the direction of gravity applied to the rotating part changes. The friction torque increases with the increase of the HDD positioning angle until it becomes $60^{\circ}$, and decreases with the increase of the HDD positioning angle after it becomes $60^{\circ}$. The stability is the maximum when the HDD positioning angle is $90^{\circ}$.

  • PDF