• 제목/요약/키워드: axial equilibrium

검색결과 134건 처리시간 0.02초

Short- and long-term analyses of shear lag in RC box girders considering axial equilibrium

  • Xiang, Yiqiang;He, Xiaoyang
    • Structural Engineering and Mechanics
    • /
    • 제62권6호
    • /
    • pp.725-737
    • /
    • 2017
  • An analytical method considering axial equilibrium is proposed for the short- and long-term analyses of shear lag effect in reinforced concrete (RC) box girders. The axial equilibrium of box girders is taken into account by using an additional generalized displacement, referred to as the longitudinal displacement of the web. Three independent shear lag functions are introduced to describe different shear lag intensities of the top, bottom, and cantilever plates. The time-dependent material properties of the concrete are simulated by the age-adjusted effective modulus method (AEMM), while the reinforcement is assumed to behave in a linear-elastic fashion. The differential equations are derived based on the longitudinal displacement of the web, the vertical displacement of the cross section, and the shear lag functions of the flanges. The time-dependent expressions of the generalized displacements are then deduced for box girders subjected to uniformly distributed loads. The accuracy of the proposed method is validated against the finite element results regarding the short- and long-term responses of a simply-supported RC box girder. Furthermore, creep analyses considering and neglecting shrinkage are performed to quantify the time effects on the long-term behavior of a continuous RC box girder. The results show that the proposed method can well evaluate both the short- and long-term behavior of box girders, and that concrete shrinkage has a considerable impact on the concrete stresses and internal forces, while concrete creep can remarkably affect the long-term deflections.

Effect of axial stretching on large amplitude free vibration of a suspended cable

  • Chucheepsakul, Somchai;Wongsa, Sanit
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.185-197
    • /
    • 2001
  • This paper presents the effect of axial stretching on large amplitude free vibration of an extensible suspended cable supported at the same level. The model formulation developed in this study is based on the virtual work-energy functional of cables which involves strain energy due to axial stretching and work done by external forces. The difference in the Euler equations between equilibrium and motion states is considered. The resulting equations govern the horizontal and vertical motion of the cables, and are coupled and highly nonlinear. The solution for the nonlinear static equilibrium configuration is determined by the shooting method while the solution for the large amplitude free vibration is obtained by using the second-order central finite difference scheme with time integration. Numerical examples are given to demonstrate the vibration behaviour of extensible suspended cables.

축방향 변형을 고려한 사장교의 초기평형상태 해석 (Initial Equilibrium State Analysis of Cable Stayed Bridges Considering Axial Deformation)

  • 김제춘;장승필
    • 한국강구조학회 논문집
    • /
    • 제14권4호
    • /
    • pp.539-547
    • /
    • 2002
  • 사장교의 정확한 초기형상을 결정하기 위한 초기평형상태 해석법으로 케이블 장력에 큰 영향을 미치는 축방향 변형을 고려한 반복해석 알고리즘을 제시하였다. 해석의 정확성과 수렴성을 향상시키기 위해 매개변수 해석을 통해 케이블 장력의 초기값을 간단하게 결정할 수 있는 방법을 제안하였으며, 3차원 뼈대요속와 탄성현수선요소를 적용한 해석 프로그램을개발하여 사장교의 기하비선형 거동을 고려하였다. 실교량 모델을 포함한 해석 예제를 통하여 본 연구에서 제시한 해석 알고리즘의 정확성과 적용성을 검증하였다. 제안된 해석 알고리즘은 부재 제작시 측방향 변형을 제작 캠버량으로 반영하지 않는 경우나 시공중 발생하는 시공오차나 제작오차의 영향을 제거하기 위해 최종장력을 보정하는 경우에 유용하게 적용될 수 있다.

Unified theory of reinforced concrete-A summary

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.1-16
    • /
    • 1994
  • A unified theory has recently been developed for reinforced concrete structures (Hsu 1993), subjected to the four basic actions - bending, axial load, shear and torsion. The theory has five components, namely, the struts-and-ties model, the equilibrium (or plasticity) truss model, the Bernoulli compatibility truss model, the Mohr compatibility truss model and the softened truss model. Because the last three models can satisfy the stress equilibrium, the strain compatibility and the constitutive laws of materials, they can predict not only the strength, but also the load-deformation history of a member. In this paper the five models are summarized to illustrate their intrinsic consistency.

축류터어빈의 기초설계 해석 (Preliminary Design Analysis of an Axial-Flow Turbine)

  • 구삼옥;최동환
    • 한국기계연구소 소보
    • /
    • 통권14호
    • /
    • pp.111-119
    • /
    • 1985
  • A review on the design analysis of an axial-flow turbine is presented. Followed by a brief introduction to the fundamentals on an axial-flow turbine, a design procedure is described with a sample design of one for a small turbo-jet engine. Design procedure is composed of two parts: one-dimensional analysis of three-dimensional effects based on radial equilibrium theory. The method described herein is so simple and rapid that it can be applied to the preliminary design analysis of turbo-machinery equipped with axial-flow turbines.

  • PDF

매시브 콘크리트에 배근된 축방향 주철근의 인발특성에 관한 해석적 연구 (An Analytical Study on the Pullout Properties of Axial Bars Embedded in Massive Concrete)

  • 장일영;송재호;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.194-200
    • /
    • 1993
  • The objective of this study is to clarify analytically the pullout behavior of axial bars from a footing. The bond stress-slip model obtained from the results by the finite element method as well as the pullout tests in massive concrete was used in order to evaluate the slip of bars from the footing. Also, the process of bond mechanism was taken into consideration on order to express the deterioration of bond stress along bars, The shape and magnitude of bond stress distribution depends upon each loading steps. Using equilibrium equation of axial force, $\tau$-S relationship and $\sigma$s-$\varepsilon$s relationship, the differential equations of each loading steps are derived. Applying both boundary and equilibrium conditions to the equations, the amount of slip could be determined. Calculated values on the basis of proposed method evaluation of the slip of bars have a good agreement with the experimental results.

  • PDF

Buckling and stability analysis of sandwich beams subjected to varying axial loads

  • Eltaher, Mohamed A.;Mohamed, Salwa A
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.241-260
    • /
    • 2020
  • This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton's principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.

Experimental study on fire performance of axially-restrained NSC and HSC columns

  • Wu, Bo;Li, Yi-Hai
    • Structural Engineering and Mechanics
    • /
    • 제32권5호
    • /
    • pp.635-648
    • /
    • 2009
  • This paper describes fire performance of eight axially restrained reinforced concrete (RC) columns under a combination of two different load ratios and two different axial restraint ratios. The eight RC columns were all concentrically loaded and subjected to ISO834 standard fire on all sides. Axial restraints were imposed at the top of the columns to simulate the restraining effect of the rest of the whole frame. The axial restraint was effective when the column was expanding as well as contracting. As the results of the experiments have shown, the stiffness of the axial restraint and load level play an important role in the fire behaviors of both HSC and NSC columns. It is found that (a) the maximum deformations during expanding phase were influenced mostly by load ratio and hardly by axial restraint ratio, (b) For a given load ratio, axial restraint ratio had a great impact on the development of axial deformation during contraction phase beyond the initial equilibrium state, (c) increasing the axial restraint increased the value of restraint force generated in both the NSC and HSC columns, and (d) the development of column axial force during the contracting and cooling phase followed nearly parallel trend for columns under the same load ratio.

Nonlinear analysis of reinforced concrete beam elements subject to cyclical combined actions of torsion, biaxial flexure and axial forces

  • Cocchi, Gian Michele;Tiriaca, Paolo
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.829-862
    • /
    • 2004
  • This paper presents a method for the nonlinear analysis of beam elements subjected to the cyclical combined actions of torsion, biaxial flexure and axial forces based on an extension of the disturbed compression field (DSFM). The theoretical model is based on a hybrid formulation between the full rotation of the cracks model and the fixed direction of the cracking model. The described formulation, which treats cracked concrete as an orthotropic material, includes a new approach for the evaluation of the re-orientation of both the compression field and the deformation field by removing the restriction of their coincidence. A new equation of congruence permits evaluating the deformation of the middle line. The problem consists in the solution of coupled nonlinear simultaneous equations expressing equilibrium, congruence and the constitutive laws. The proposed method makes it possible to determine the deformations of the beam element according to the external stresses applied.

고성능 엇회전식 축류팬의 공력특성에 대한 전산해석 (Numerical analyses on the Aerodynamic Characteristics of a Counter-rotating Axial Flow Fan)

  • 조이상;조진수
    • 융복합기술연구소 논문집
    • /
    • 제5권1호
    • /
    • pp.37-40
    • /
    • 2015
  • Numerical analyses on the aerodynamic characteristics of a counter rotating axial flow fan is carried out using the frequency domain panel method. Front rotor and rear rotor blades of a counter rotating axial fan are designed by using the simplified meridional flow analysis method with the radial equilibrium equation and the free vortex design condition, according to design requirements. Performance characteristics of a counter rotating axial flow fan are estimated for the variation of design parameters such as the hub to tip ratio, the taper ratio and the solidity. Pressure losses were higher at leading edge and hub region of rotor blades. Characteristic curve of the counter rotating fan was overpredicted without consideration of viscous effect.